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Notes 13: Sauer–Shelah lemma

1. Sauer–Shelah Lemma

Claim 1. |ΠC(S)| ⩽ |{T ⊆ S | C shatters T}|

Proof. Apply following Proposition with F = ΠC(S)
Note that T is shattered by C if and only if T is shattered by F = ΠC(S) □

Proposition 2 (Pajor). A finite family F of subsets over S shatters at least |F| subsets, i.e.

|F| ⩽ #subsets F shatters = |{T ⊆ S | F shatters T}|

e.g. 1

2

3

4 F =

 {1, 2, 3},
{2, 3, 4},
{1, 2, 3, 4}

, F shatters {1}, {4}, ∅

Proof of Proposition. Base case |F| = 0: trivial
Base case |F| = 1: F shatters ∅
Induction step for |F| > 1 : Fix x ∈ S belonging to some but not all of the sets in F

Split F into F∋x and F ̸∋x (those containing x and those do not)
Induction hypothesis implies F∋x shatters ⩾ |F∋x| subsets, F ̸∋x shatters ⩾ |F ̸∋x| subsets

|F| = |F∋x|+ |F ̸∋x| ⩽ #subsets F∋x shatters + #subsets F ̸∋x shatters

Remains to show right-hand-side ⩽ #subsets F shatters

Any set shattered by F∋x cannot contain x, since all sets in F∋x contain x
Any set shattered by F ̸∋x cannot contain x, since all sets in F ̸∋x do not contain x
Thus any set of the form T ∪ {x} cannot be shattered by F∋x or F ̸∋x

If T is shattered by only one of F∋x or F ̸∋x, T contributes 1 to #subsets F shatters
If T is shattered by both F∋x and F ̸∋x, then T and T ∪ {x} are both shattered by F

T and T ∪ {x} together contribute 2 to #subsets F shatters □

Lemma 3 (Perles–Sauer–Shelah). When VCDim(C) = d, ΠC(m) ⩽
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Proof. By above Claim, at most
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choices for shattered subset T

No subset larger than d = VCDim(C) is shattered □

Corollary 4. When VCDim(C) = d and m ⩾ d, ΠC(m) ⩽
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⩽ (ed/m)m = ed

First inequality due to d/m ⩽ 1
Second inequality due to d ⩽ m
Next equality is binomial theorem
Last inequality is 1 + x ⩽ ex for all real x □
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2. Consistent Hypothesis

Theorem 5. Given m independent labelled samples, with prob. ⩾ 1 − δ, any hypothesis consistent
with all m samples has erorr at most ε, provided

m ⩾ Ω

(
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ε
log ΠC(2m)

δ

)
Compared with notes09, now C may be infinite
notes09 was union bound over H; now over dichotomies on 2m samples
Proof. Imagine drawing 2m labelled samples (xi, c(xi)) from EX(c,D)
Call m of the samples S1; the remaining m samples S2

Event A: Some bad h ∈ C is consistent with S1

Recall h is bad if errD(h, c) ⩾ ε; Goal: show P[A] ⩽ δ
Event B: Some h ∈ C is consistent with S1 but wrong on ⩾ εm/2 samples in S2

Claim 6. If m ⩾ 8/ε, then P[A] ⩽ 2P[B]

Proof of Claim. P[B] ⩾ P[B and A] = P[A]P[B | A]
Suffice to show P[B | A] ⩾ 1/2

When A occurs, fix any bad h, P[h makes at most εm/2 mistakes on S2] ⩽ e−
1
8
εm ⩽ 1/e ⩽ 1/2 □

Using Claim, suffices to show P[B] ⩽ δ/2
Equivalent way to view B:

(1) First draw 2m independent labelled samples S
(2) Randomly split S into two halves, S1 and S2 (first and second halves)
(3) Event B: S1 contains no mistakes, S2 contains ⩾ εm/2 mistakes

Now fix any 2m instances S and a labeling/dichotomy of S (from ΠC(S)) from step (1)
Event B is equivalent to ⩾ εm/2 mistakes in S all falling in S2

Combinatorial experiment: 2m balls (S), each colored red (mistake) or blue (correct)
exactly ℓ are red (ℓ ⩾ εm/2)
Randomly put m balls into S1 and the other m balls into S2

P[all red balls fall into S2 equals] =
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(= P[out of 2m uncolored balls, randomly color ℓ of them red and all red balls fall on S2])(
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Union bound over at most ΠC(S) labelings of S with ℓ ⩾ εm/2:

P[B] ⩽ ΠC(2m)

2εm/2
⩽ δ

2
when m ⩾ 2

ε
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δ
Advantage of Event B over Event A:

union bound over finitely many (in fact ΠC(2m)) labelings; even when C is infinite □
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