CSCI4230 Computational Learning Theory Spring 2021

Lecturer: Siu On Chan Based on Rocco Servedio's notes and Wikipedia

Notes 13: Sauer–Shelah lemma

1. Sauer–Shelah Lemma

 $\textbf{Claim 1.} |\Pi_{\mathcal{C}}(S)| \leqslant |\{T \subseteq S \mid \mathcal{C} \text{ shatters } T\}|$

Proof. Apply following Proposition with $\mathcal{F} = \Pi_{\mathcal{C}}(S)$ Note that *T* is shattered by *C* if and only if *T* is shattered by $\mathcal{F} = \Pi_{\mathcal{C}}(S)$

Proposition 2 (Pajor)**.** *A finite family F of subsets over S shatters at least |F| subsets, i.e.*

 $|\mathcal{F}| \leq \text{\#subsets \mathcal{F} shatters} = |\{T \subseteq S \mid \mathcal{F} \text{ shatters } T\}|$

e.g. 1

2 3 $\mathcal{F} =$ $\sqrt{ }$ $\frac{1}{2}$ \mathbf{I} *{*1*,* 2*,* 3*}, {*2*,* 3*,* 4*}, {*1*,* 2*,* 3*,* 4*}* \mathbf{A} \mathcal{L} \mathbf{J} , *F* shatters *{*1*}, {*4*}, ∅*

Proof of Proposition. Base case $|\mathcal{F}| = 0$: trivial Base case $|\mathcal{F}| = 1$: $\qquad \mathcal{F}$ shatters \emptyset

Induction step for $|\mathcal{F}| > 1$: Fix $x \in S$ belonging to some but not all of the sets in \mathcal{F} Split *F* into $\mathcal{F}_{\ni x}$ and $\mathcal{F}_{\not\exists x}$ (those containing *x* and those do not)

Induction hypothesis implies $\mathcal{F}_{\ni x}$ shatters $\geq |\mathcal{F}_{\ni x}|$ subsets, $\mathcal{F}_{\not\equiv x}$ shatters $\geq |\mathcal{F}_{\not\equiv x}|$ subsets

 $|\mathcal{F}| = |\mathcal{F}_{\ni x}| + |\mathcal{F}_{\ni x}| \leqslant \#$ subsets $\mathcal{F}_{\ni x}$ shatters + #subsets $\mathcal{F}_{\ni x}$ shatters

Remains to show right-hand-side \leq #subsets $\mathcal F$ shatters

Any set shattered by $\mathcal{F}_{\ni x}$ cannot contain *x*, since all sets in $\mathcal{F}_{\ni x}$ contain *x* Any set shattered by $\mathcal{F}_{\not\exists x}$ cannot contain *x*, since all sets in $\mathcal{F}_{\not\exists x}$ do not contain *x* Thus any set of the form $T \cup \{x\}$ cannot be shattered by $\mathcal{F}_{\ni x}$ or $\mathcal{F}_{\not\supset x}$

If *T* is shattered by only one of $\mathcal{F}_{\ni x}$ or $\mathcal{F}_{\not\equiv x}$, *T* contributes 1 to #subsets *F* shatters If *T* is shattered by both $\mathcal{F}_{\ni x}$ and $\mathcal{F}_{\ni x}$, then *T* and $T \cup \{x\}$ are both shattered by $\mathcal F$ *T* and $T \cup \{x\}$ together contribute 2 to #subsets $\mathcal F$ shatters

$$
\Box
$$

Lemma 3 (Perles–Sauer–Shelah). *When* $VCDim(\mathcal{C}) = d$, $\Pi_{\mathcal{C}}(m) \leq$ (*m* 0) + (*m* 1) $+ \cdots +$ (*m d* λ

Proof. By above Claim, at most \sum $0 \leq k \leq d$ (*m k* λ choices for shattered subset *T* No subset larger than $d = \text{VCDim}(\mathcal{C})$ is shattered \square

Corollary 4. *When* $VCDim(\mathcal{C}) = d$ *and* $m \geq d$, $\Pi_{\mathcal{C}}(m) \leq \left(\frac{em}{d}\right)$ *d* \setminus^d

Proof. Want to show ∑ 0⩽*k*⩽*m* (*m k* \setminus $\leqslant \left(\frac{em}{I}\right)$ *d* \int^d for $m \geqslant d$

$$
\left(\frac{d}{m}\right)^d \sum_{0 \leqslant k \leqslant d} \binom{m}{k} \leqslant \sum_{0 \leqslant k \leqslant d} \left(\frac{d}{m}\right)^k \binom{m}{k} \leqslant \sum_{0 \leqslant k \leqslant m} \left(\frac{d}{m}\right)^k \binom{m}{k} = \left(1 + \frac{d}{m}\right)^m \leqslant (e^{d/m})^m = e^{d}
$$

First inequality due to $d/m \leq 1$ Second inequality due to $d \leq m$ Next equality is binomial theorem Last inequality is $1 + x \leqslant e^x$ for all real *x* □

Theorem 5. *Given m* independent labelled samples, with prob. $\geq 1 - \delta$, any hypothesis consistent *with all m samples has erorr at most ε, provided*

$$
m \geqslant \Omega\left(\frac{1}{\varepsilon}\log\frac{\Pi_{\mathcal C}(2m)}{\delta}\right)
$$

Compared with notes09, now $\mathcal C$ may be infinite

notes09 was union bound over H ; now over dichotomies on $2m$ samples

Proof. Imagine drawing 2*m* labelled samples $(x^i, c(x^i))$ from $EX(c, \mathcal{D})$ Call *m* of the samples S_1 ; the remaining *m* samples S_2 Event *A*: Some bad $h \in \mathcal{C}$ is consistent with S_1

Recall *h* is bad if $\text{err}_{\mathcal{D}}(h, c) \geqslant \varepsilon$; Goal: show $\mathbb{P}[A] \leqslant \delta$ Event *B*: Some $h \in \mathcal{C}$ is consistent with S_1 but wrong on $\geq \varepsilon m/2$ samples in S_2

Claim 6. *If* $m \ge 8/\varepsilon$, then $\mathbb{P}[A] \le 2 \mathbb{P}[B]$

Proof of Claim. $\mathbb{P}[B] \geq \mathbb{P}[B \text{ and } A] = \mathbb{P}[A] \mathbb{P}[B \mid A]$ Suffice to show $\mathbb{P}[B \mid A] \geq 1/2$

When *A* occurs, fix any bad *h*, $\mathbb{P}[h$ makes at most $\varepsilon m/2$ mistakes on S_2 | $\leq e^{-\frac{1}{8}\varepsilon m} \leq 1/e \leq 1/2$ □

Using Claim, suffices to show $P[B] \leq \delta/2$

Equivalent way to view *B*:

- (1) First draw 2*m* independent labelled samples *S*
- (2) Randomly split *S* into two halves, S_1 and S_2 (first and second halves)
- (3) Event *B*: *S*₁ contains no mistakes, *S*₂ contains $\geq \varepsilon m/2$ mistakes

Now fix any 2*m* instances *S* and a labeling/dichotomy of *S* (from $\Pi_{\mathcal{C}}(S)$) from step (1) Event *B* is equivalent to $\geq \varepsilon m/2$ mistakes in *S* all falling in S_2

Combinatorial experiment: 2*m* balls (*S*), each colored red (mistake) or blue (correct)

exactly ℓ are red $(\ell \geq \varepsilon m/2)$

Randomly put *m* balls into S_1 and the other *m* balls into S_2

 $\mathbb{P}[\text{all red balls fall into } S_2 \text{ equals}] = \binom{m}{\ell} / \binom{2m}{\ell}$ *ℓ*)

 $(=\mathbb{P}[\text{out of } 2m \text{ uncolored balls, randomly color } \ell \text{ of them red and all red balls fall on } S_2])$

$$
\frac{\binom{m}{\ell}}{\binom{2m}{\ell}} = \frac{m}{2m} \frac{m-1}{2m-1} \cdots \frac{m-\ell+1}{2m-\ell+1} \leqslant \left(\frac{1}{2}\right)^{\ell}
$$

Union bound over at most $\Pi_{\mathcal{C}}(S)$ labelings of *S* with $\ell \geq \varepsilon m/2$:

$$
\mathbb{P}[B] \leqslant \frac{\Pi_{\mathcal{C}}(2m)}{2^{\varepsilon m/2}} \leqslant \frac{\delta}{2} \qquad \text{when } m \geqslant \frac{2}{\varepsilon} \log \frac{2 \Pi_{\mathcal{C}}(2m)}{\delta}
$$

Advantage of Event *B* **over Event** *A*:

union bound over finitely many (in fact $\Pi_c(2m)$) labelings; even when *C* is infinite \Box