CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 12: Sample Size Bounds via VC dimension

Is C PAC-learnable?
How many samples are needed to learn C? (perhaps with an inefficient algorithm)
If C is finite, and if confidence parameter § is constant (e.g. § = 1/100)

then roughly (In |C|)/e samples suffice (Consistent Hypothesis Algorithm)
What about lower bound?
What if C is infinite?

VC dimension gives almost tight answer!
Let d = VCDim(C)
Any PAC learning algorithm for C must use Q(d/e) samples
if VCDim(C) = oo, needs infinitely many samples (not PAC learnable)
Consistent Hypothesis Algorithm PAC-learns C with m = O (é (dln% +1n %)) samples
inefficient algorithm

dIn(1/¢) + In(1/6)
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d
Clg < #samples to PAC learn (slowly) < Co

1. LowER BOUNDS

Claim 1 (No Free Lunch). Let d = VCDim(C). Any PAC algorithm to learn C with 6 = 1/10 (say)

must use > d/2 = Q(d) samples on some distribution D

Proof. Some subset S = {x!,..., 2%} is shattered by C

Every dichotomy 7' C S is induced by some ¢ € C

Idea: Every labeling is possible; d/2 seen samples give no information about unseen samples
D = uniform distribution on S

Pick one of the dichotomies 7" and some ¢ inducing it (2% of them) uniformly at random

If algorithm A gets d/2 samples and output hypothesis h

d/21 1
Elerrp(h,c)] = P [z isn’t among the d/2 seen samples| P[h(x) # c¢(x)] = 6/12 =1
c z~D c
x & errp(h, ¢) nonnegative random variable with E[X] < 3/4
By averaging argument/Markov inequality,
BIX > 7/8] < EIX]/(7/8) < (3/4)/(7/8) = 6/7
i.e. Plerrp(h,c) > 1/8] > 1/7 O
Markov inequality: For any nonnegative random variable X, any ¢ > 0,
PIX > 1] SE[X]/t
Reason: E[X] = PXZHEX|X 2 +PX <HEX | X <t] = (tPX >1{
>t >0 >0

The lower bound can be boosted to €(d/¢)
Claim 2. Let d = VCDim(C). Any PAC algorithm to learn C with § = 1/10 (say) must use (d/e)

samples on some distribution D

Proof. Some subset S = {z!,..., 2%} is shattered by C
D has weight 1 — 8¢ on x! and weight 8¢/(d — 1) on any of 22,...
Idea: 22, ... 2% are rare: every 1/(8¢) sample is one of them; slows down learning by Q(1/¢)
Again, pick one of the dichotomies 7' and some ¢ inducing it (2¢ of them) uniformly at random
If algorithm A gets < (d — 1)/2 of the rare samples (i.e. one of 22,..., 2%

then with prob. > 1/7, A has error > 1/8 under the uniform distribution over rare samples

rare samples have total weight 8¢, so A has error > € under D
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How likely will A get < (d —1)/2 of rare samples?
If A uses % = Q(d/e) samples
[E[#rare samples] = 8¢ (?3551 = dll
P [#rare samples > d_Tl] < e~ (d-1)/12 (Chernoff; pm = %,'y =1)
< 1/100 (say) when d > 100
Overall with prob. > 221 > 1 A outputs hypothesis h with error > ¢ O

99 1 > 1
1007 = 10°

2. UPPER BOUND

If VCDim(C) = d, will show that O (2 (dInl +1In)) samples suffice to PAC-learn C

Similar bound as Consistent Hypothesis analysis in notes09

In |H| replaced with VCDim(C)In 1
Lower bound proof suggests too many dichotomies induced by C make future prediction difficult
Upper bound proof will show that when m is much bigger than d, not many dichotomies are possible
Will prove in two steps:

(1) When m > d, #dichotomies induced on m samples grow only polynomially, i.e. O(m?)

(2) With few dichotomies, a small number of samples is likely representative

and Consistent Hypothesis Algorithm works

Now measure #dichotomies on m samples as follows
Given subset of samples S C X

I (S) e {dichotomies induced on S by C} = {cNS|ceC}
e.g. C = {closed intervals}, S = {1,2,3} C X =R,
He(S) ={0,{1},{2}, {3}, {1,2},{2,3},{1,2,3}}  (missing {1,3})
Key definition: Growth function / Shatter coefficient
IIe(m) L nax #dichotomies induced on subset of m samples = max{Il¢(S) | S C X, |S|=m}

e.g. C = {closed intervals}
le(1) =2  Ie(2)=4 Ie(3)=7

Note: VCDim(C) > m = IIg(m) = 2™

II¢(m) grows exponentially when m < d (and that’s why insufficient info to learn)
d

Next lecture: IIe(m) < (%) grows polynomially in m when m > d and d fixed
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