CSCI4230 Computational Learning Theory Spring 2019 *Lecturer: Siu On Chan Based on Rocco Servedio's notes*

Notes 11: Proper vs Improper Learning

Proper learning: Algorithm required to output $h \in \mathcal{C}$, i.e. $\mathcal{H} = \mathcal{C}$ **Improper learning**: Algorithm allowed to output $h \notin C$, i.e. $H \supsetneq C$ (Below) When $C = \{3$ -term DNF} over $X = \{0, 1\}^n$ Can efficiently PAC-learn C with improper algorithm No efficient algorithm can properly PAC-learn \mathcal{C} (under standard complexity assumption) By contrast, 1-term DNF $(=$ disjunctions) can be efficiently PAC-learned properly using Consistent Hypothesis Algorithm: ¹ $\frac{1}{\varepsilon}$ $(O(n) + \ln \frac{1}{\delta})$ samples

1. 3-term DNF vs 3-CNF

Every 3-term DNF is 3-CNF

3-term DNF $f(x) = T_1 \vee T_2 \vee T_3$ where T_i are conjunctions Since \vee distributes over \wedge , i.e. $(u \wedge v) \vee (x \wedge y) = (u \vee x) \wedge (u \vee y) \wedge (v \vee x) \wedge (v \vee y)$

$$
f(x) = T_1 \vee T_2 \vee T_3 = \bigwedge_{\text{ literals } x \text{ in } T_1, y \text{ in } T_2, z \text{ in } T_3} (x \vee y \vee z)
$$

There is efficient improper PAC learning algorithm when $C \subsetneq H = \{3\text{-CNF}\}\$

e.g. when $C = \{3$ -term DNF $\}$

Consistent Hypothesis Algorithm based on Elimination

 $|\mathcal{H}| = 2^{\binom{n}{3}2^3} = 2^{O(n^3)} \qquad \Longrightarrow \qquad \frac{1}{\varepsilon} \left(O(n^3) + \ln \frac{1}{\delta} \right)$ samples

2. Graph 3-Coloring

Theorem 1. *If some efficient algorithm A properly PAC-learns* 3*-term DNF, then some efficient randomized algorithm B solves Graph-*3*-Coloring (and violates standard complexity assumption)*

Graph-3**-Coloring** problem

Input: *n*-vertex undirected graph *G*

Goal: Decides if vertices of *G* can be colored using 3 colors

so that no edge has both endpoints with the same color

Graph-3-Coloring is NP-complete

widely believed not solvable in polynomial time; Θ(*n*) time In the theorem, efficient randomized algorithm *B* for Graph-3-Coloring on graph *G*

(1) always runs in poly(*n*) time

(2) If *G* is not 3-colorable, *B* always says No

(3) If *G* is 3-colorable, *B* says Yes with probability $\geq 1/2$ (can be boosted to $\geq 1-2^{-n}$) Standard complexity assumption is $NP \neq RP$

The theorem is proved via reduction from Graph-3-Coloring to proper PAC-learning of 3-term DNF An algorithm *R* that maps *n*-vertex graph *G* to set $S = S^+ \cup S^-$ of labelled examples over $\{0,1\}^n$ s.t. *G* has 3-coloring \iff (S^+, S^-) is consistent with some 3-term DNF

R runs in poly(*n*) time (in particular $|S| \leqslant \text{poly}(n)$)

Labelled samples (*S* ⁺*, S−*) from *R* corresponds to PAC-learning task with parameters $\varepsilon = 1/(2|S|)$ $\delta = 1/2$ $\mathcal{D} =$ uniform distribution over *S*

Suppose some algorithm *A* solves proper PAC-learning of 3-term DNF

Randomized algorithm *B* to solve Graph-3-Coloring on graph *G* Run reduction *R* on *G* to get labelled samples S^+ and S^- Feed *m* random samples to *A* to get its hypothesis *h* Return Yes if *h* is consistent with all labelled samples (S^+, S^-) ⁺*, S−*) (Return No otherwise)

Let's check that *B* satisfies the three conditions of an RP algorithm Since *A* efficiently PAC-learns 3-term DNF

Number of samples needed by *A* is $m = \text{poly}(n, \frac{1}{\varepsilon}, \frac{1}{\delta})$ $\frac{1}{\delta}$) = poly (n) Overall, *B* always runs in $\text{poly}(n)$ time

If *G* has no 3-coloring, no 3-term DNF $c(x)$ is consistent with all labelled samples

Neither is A 's hypothesis $h(x)$ that is 3-term DNF *B* always says No

If *G* has 3-coloring, some 3-term DNF *c*(*x*) is consistent with all labelled samples With probability $\geq \delta = 1/2$, *A* must output $h = c$ because $\varepsilon = 1/(2|S|)$ (effectively no error) *B* will say Yes

3. The Reduction

Reduction algorithm *R* reads *G* and outputs *S* ⁺ and *S −* Every vertex v in G yields a positive sample in S^+ that has 0 at position v and 1 everywhere else Every edge (*u, v*) in *G* yields a negative sample in *S −* that has 0 at positions *u* and *v* and 1 elsewhere

Claim 2. *If G has* 3*-coloring, then* (S^+, S^-) *is labelled by some* 3*-term DNF*

Proof. Fix 3-coloring *f* of *G* using colors R, B, Y T_R = conjunction of all x_v such that *v* is not red in *f* T_B , T_Y defined similarly (not blue, not yellow respectively) When is $T_R(x)$ true? Every $x \in \{0,1\}^n$ is the indicator of some subset $S \subseteq V$, i.e. $x = \mathbb{1}_S$ $T_R(\mathbb{1}_S)$ is true \iff *S* contains all non red vertices \iff *S* are all red $c = T_R \vee T_B \vee T_R$ correctly labels (S^+, S^-) because $c(\mathbb{1}_{\neq v}) = 1$ since $\{v\}$ is all red (or all blue, or all yellow) $c(\mathbb{1}_{\notin(u,v)}) = 0$ since endpoints *u*, *v* of an edge are not both red (nor both blue, nor both yellow) □

Claim 3. *If* (S^+, S^-) *is labelled by some* 3*-term DNF, then G has* 3*-coloring*

Proof. Fix 3-term DNF $c = T_R \vee T_B \vee T_Y$ that correctly labels (S^+, S^-) Color *v* red if $T_R(\mathbb{1}_{\neq v})$ is true; Similarly for blue and yellow If a vertex can get multiple colors, pick any one of them $c(\mathbb{1}_{\neq v}) = 1 \implies$ every vertex *v* can get at least one color $c(\mathbb{1}_{\neq(u,v)}) = 0 \iff T_R(\mathbb{1}_{\neq(u,v)}) = T_B(\mathbb{1}_{\neq(u,v)}) = T_Y(\mathbb{1}_{\neq(u,v)})$ $c(\mathbb{1}_{\notin(u,v)})=0$ $T_R(\mathbb{1}_{\notin(u,v)}) = T_B(\mathbb{1}_{\notin(u,v)}) = T_Y(\mathbb{1}_{\notin(u,v)}) = 0$ When is $T_R(\mathbb{1}_{\notin(u,v)})$ false? Let *P* be the set of vertices whose positive literal appears in T_R ; Likewise *N* for negative $T_R(\mathbb{1}_{\mathcal{L}(u,v)})$ is false $\iff u \in P$ or $v \in P$ or some vertex $w \in N$ is distinct from *u, v* if $u \in P$ then $T_R(\mathbb{1}_{\neq u}) = 0$ and u cannot be red (Likewise $v \in P$ implies v cannot be red) if some $w \in N \setminus \{u, v\}$, then $T_R(\mathbb{1}_{\neq u}) = 0$ and *u* cannot be red (and neither can *v*) Thus $T_R(\mathbb{1}_{\mathcal{L}(u,v)}) = 0$ implies at least one of *u* or *v* can't be red $T_R(\mathbb{1}_{\mathcal{L}(u,v)}) = T_B(\mathbb{1}_{\mathcal{L}(u,v)}) = T_Y(\mathbb{1}_{\mathcal{L}(u,v)}) = 0$ means *u* and *v* can't get the same color □

In general