
CSCI4230 Computational Learning Theory Spring 2019
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 11: Proper vs Improper Learning
Proper learning: Algorithm required to output h ∈ C, i.e. H = C
Improper learning: Algorithm allowed to output h /∈ C, i.e. H ⊋ C
(Below) When C = {3-term DNF} over X = {0, 1}n

Can efficiently PAC-learn C with improper algorithm
No efficient algorithm can properly PAC-learn C (under standard complexity assumption)

By contrast, 1-term DNF (= disjunctions) can be efficiently PAC-learned properly
using Consistent Hypothesis Algorithm: 1

ε

(
O(n) + ln 1

δ

)
samples

1. 3-term DNF vs 3-CNF

Every 3-term DNF is 3-CNF
3-term DNF f(x) = T1 ∨ T2 ∨ T3 where Ti are conjunctions
Since ∨ distributes over ∧, i.e. (u ∧ v) ∨ (x ∧ y) = (u ∨ x) ∧ (u ∨ y) ∧ (v ∨ x) ∧ (v ∨ y)

f(x) = T1 ∨ T2 ∨ T3 =
∧

literals x in T1, y in T2, z in T3

(x ∨ y ∨ z)

There is efficient improper PAC learning algorithm when C ⊊ H = {3-CNF}
e.g. when C = {3-term DNF}
Consistent Hypothesis Algorithm based on Elimination
|H| = 2(

n
3)2

3
= 2O(n3) =⇒ 1

ε

(
O(n3) + ln 1

δ

)
samples

2. Graph 3-Coloring

Theorem 1. If some efficient algorithm A properly PAC-learns 3-term DNF, then some efficient
randomized algorithm B solves Graph-3-Coloring (and violates standard complexity assumption)

Graph-3-Coloring problem
Input: n-vertex undirected graph G
Goal: Decides if vertices of G can be colored using 3 colors

so that no edge has both endpoints with the same color
R

B B B

Y

R B

Y

not 3-colorable

Graph-3-Coloring is NP-complete
widely believed not solvable in polynomial time; current fastest algorithm takes 2Θ(n) time

In the theorem, efficient randomized algorithm B for Graph-3-Coloring on graph G

(1) always runs in poly(n) time
(2) If G is not 3-colorable, B always says No
(3) If G is 3-colorable, B says Yes with probability ⩾ 1/2 (can be boosted to ⩾ 1− 2−n)

Standard complexity assumption is NP ̸= RP

The theorem is proved via reduction from Graph-3-Coloring to proper PAC-learning of 3-term DNF
An algorithm R that maps n-vertex graph G to set S = S+ ∪ S− of labelled examples over {0, 1}n

s.t. G has 3-coloring ⇐⇒ (S+, S−) is consistent with some 3-term DNF
R runs in poly(n) time (in particular |S| ⩽ poly(n))

Labelled samples (S+, S−) from R corresponds to PAC-learning task with parameters
ε = 1/(2|S|) δ = 1/2 D = uniform distribution over S

Suppose some algorithm A solves proper PAC-learning of 3-term DNF
1

2

Randomized algorithm B to solve Graph-3-Coloring on graph G

Run reduction R on G to get labelled samples S+ and S−

Feed m random samples to A to get its hypothesis h
Return Yes if h is consistent with all labelled samples (S+, S−) (Return No otherwise)

Let’s check that B satisfies the three conditions of an RP algorithm
Since A efficiently PAC-learns 3-term DNF

Number of samples needed by A is m = poly(n, 1ε ,
1
δ) = poly(n)

Overall, B always runs in poly(n) time
If G has no 3-coloring, no 3-term DNF c(x) is consistent with all labelled samples

Neither is A’s hypothesis h(x) that is 3-term DNF
B always says No

If G has 3-coloring, some 3-term DNF c(x) is consistent with all labelled samples
With probability ⩾ δ = 1/2, A must output h = c because ε = 1/(2|S|) (effectively no error)
B will say Yes

3. The Reduction

Reduction algorithm R reads G and outputs S+ and S−

Every vertex v in G yields a positive sample in S+ that has 0 at position v and 1 everywhere else
Every edge (u, v) in G yields a negative sample in S− that has 0 at positions u and v and 1 elsewhere

e.g.

1

2 3 4

5

S+ =

01111,
10111,
11011,
11101,
11110

 S− =

00111,
01011,
01101,
10110,
11010,
11100

In general S+ = {1̸=v | v ∈ G} and S− = {1/∈(u,v) | (u, v) ∈ G}

Claim 2. If G has 3-coloring, then (S+, S−) is labelled by some 3-term DNF
Proof. Fix 3-coloring f of G using colors R, B, Y
TR = conjunction of all xv such that v is not red in f
TB, TY defined similarly (not blue, not yellow respectively)
When is TR(x) true? Every x ∈ {0, 1}n is the indicator of some subset S ⊆ V , i.e. x = 1S

TR(1S) is true ⇐⇒ S contains all non red vertices ⇐⇒ S are all red
c = TR ∨ TB ∨ TR correctly labels (S+, S−) because

c(1̸=v) = 1 since {v} is all red (or all blue, or all yellow)
c(1/∈(u,v)) = 0 since endpoints u, v of an edge are not both red (nor both blue, nor both yellow) □

Claim 3. If (S+, S−) is labelled by some 3-term DNF, then G has 3-coloring
Proof. Fix 3-term DNF c = TR ∨ TB ∨ TY that correctly labels (S+, S−)
Color v red if TR(1̸=v) is true; Similarly for blue and yellow

If a vertex can get multiple colors, pick any one of them
c(1̸=v) = 1 =⇒ every vertex v can get at least one color
c(1̸∈(u,v)) = 0 ⇐⇒ TR(1̸∈(u,v)) = TB(1̸∈(u,v)) = TY (1̸∈(u,v)) = 0
When is TR(1̸∈(u,v)) false?
Let P be the set of vertices whose positive literal appears in TR; Likewise N for negative
TR(1̸∈(u,v)) is false ⇐⇒ u ∈ P or v ∈ P or some vertex w ∈ N is distinct from u, v

if u ∈ P then TR(1̸=u) = 0 and u cannot be red (Likewise v ∈ P implies v cannot be red)
if some w ∈ N \ {u, v}, then TR(1̸=u) = 0 and u cannot be red (and neither can v)
Thus TR(1̸∈(u,v)) = 0 implies at least one of u or v can’t be red

TR(1̸∈(u,v)) = TB(1̸∈(u,v)) = TY (1̸∈(u,v)) = 0 means u and v can’t get the same color □

	1. 3-term DNF vs 3-CNF
	2. Graph 3-Coloring
	3. The Reduction

