CSCI4230 Computational Learning Theory Lecturer: Siu On Chan Spring 2019 Based on Rocco Servedio's notes

Notes 11: Proper vs Improper Learning

Proper learning: Algorithm required to output $h \in C$, i.e. $\mathcal{H} = C$ **Improper learning**: Algorithm allowed to output $h \notin C$, i.e. $\mathcal{H} \supseteq C$ (Below) When $C = \{3\text{-term DNF}\}$ over $X = \{0, 1\}^n$ Can efficiently PAC-learn C with improper algorithm No efficient algorithm can properly PAC-learn C (under standard complexity assumption) By contrast, 1-term DNF (= disjunctions) can be efficiently PAC-learned properly

using Consistent Hypothesis Algorithm: $\frac{1}{\varepsilon} \left(O(n) + \ln \frac{1}{\delta} \right)$ samples

1. 3-TERM DNF VS 3-CNF

Every 3-term DNF is 3-CNF

3-term DNF $f(x) = T_1 \vee T_2 \vee T_3$ where T_i are conjunctions Since \vee distributes over \wedge , i.e. $(u \wedge v) \vee (x \wedge y) = (u \vee x) \wedge (u \vee y) \wedge (v \vee x) \wedge (v \vee y)$

$$f(x) = T_1 \lor T_2 \lor T_3 = \bigwedge_{\text{literals } x \text{ in } T_1, y \text{ in } T_2, z \text{ in } T_3} (x \lor y \lor z)$$

There is efficient improper PAC learning algorithm when $\mathcal{C} \subsetneq \mathcal{H} = \{3\text{-}\mathrm{CNF}\}$

e.g. when $\mathcal{C} = \{3\text{-term DNF}\}$

Consistent Hypothesis Algorithm based on Elimination

 $|\mathcal{H}| = 2^{\binom{n}{3}2^3} = 2^{O(n^3)} \qquad \Longrightarrow \qquad \frac{1}{\varepsilon} \left(O(n^3) + \ln \frac{1}{\delta} \right) \text{ samples}$

2. Graph 3-Coloring

Theorem 1. If some efficient algorithm A properly PAC-learns 3-term DNF, then some efficient randomized algorithm B solves Graph-3-Coloring (and violates standard complexity assumption)

Graph-3-Coloring problem

Input: n-vertex undirected graph G

Goal: Decides if vertices of G can be colored using 3 colors

so that no edge has both endpoints with the same color

Graph-3-Coloring is NP-complete

widely believed not solvable in polynomial time; current fastest algorithm takes $2^{\Theta(n)}$ time In the theorem, efficient randomized algorithm *B* for Graph-3-Coloring on graph *G*

(1) always runs in poly(n) time

(2) If G is not 3-colorable, B always says No

(3) If G is 3-colorable, B says Yes with probability $\ge 1/2$ (can be boosted to $\ge 1 - 2^{-n}$) Standard complexity assumption is NP \ne RP

The theorem is proved via reduction from Graph-3-Coloring to proper PAC-learning of 3-term DNF An algorithm R that maps n-vertex graph G to set $S = S^+ \cup S^-$ of labelled examples over $\{0,1\}^n$ s.t. G has 3-coloring $\iff (S^+, S^-)$ is consistent with some 3-term DNF

R runs in poly(n) time (in particular $|S| \leq \text{poly}(n)$)

Labelled samples (S^+, S^-) from R corresponds to PAC-learning task with parameters $\varepsilon = 1/(2|S|)$ $\delta = 1/2$ $\mathcal{D} =$ uniform distribution over S

Suppose some algorithm A solves proper PAC-learning of 3-term DNF

Randomized algorithm B to solve Graph-3-Coloring on graph G______ Run reduction R on G to get labelled samples S^+ and S^- Feed m random samples to A to get its hypothesis hReturn Yes if h is consistent with all labelled samples (S^+, S^-) (Return No otherwise)

Let's check that B satisfies the three conditions of an RP algorithm Since A efficiently PAC-learns 3-term DNF

Number of samples needed by A is $m = \text{poly}(n, \frac{1}{\varepsilon}, \frac{1}{\delta}) = \text{poly}(n)$ Overall, B always runs in poly(n) time

- If G has no 3-coloring, no 3-term DNF c(x) is consistent with all labelled samples Neither is A's hypothesis h(x) that is 3-term DNF B always says No
- If G has 3-coloring, some 3-term DNF c(x) is consistent with all labelled samples With probability $\ge \delta = 1/2$, A must output h = c because $\varepsilon = 1/(2|S|)$ (effectively no error) B will say Yes

3. The Reduction

Reduction algorithm R reads G and outputs S^+ and S^- Every vertex v in G yields a positive sample in S^+ that has 0 at position v and 1 everywhere else Every edge (u, v) in G yields a negative sample in S^- that has 0 at positions u and v and 1 elsewhere

e.g. 02 03 04
$$S^+ = \begin{cases} 01111, \\ 10111, \\ 11011, \\ 11101, \\ 11110 \end{cases}$$
 $S^- = \begin{cases} 00111, \\ 01011, \\ 01010, \\ 10110, \\ 10110, \\ 11010, \\ 11100 \end{cases}$
 $S^+ = \{\mathbb{1}_{\neq v} \mid v \in G\}$ and $S^- = \{\mathbb{1}_{\notin (u,v)} \mid (u,v) \in G\}$

Claim 2. If G has 3-coloring, then (S^+, S^-) is labelled by some 3-term DNF

Claim 3. If (S^+, S^-) is labelled by some 3-term DNF, then G has 3-coloring

Proof. Fix 3-term DNF $c = T_R \vee T_B \vee T_Y$ that correctly labels (S^+, S^-) Color v red if $T_R(\mathbb{1}_{\neq v})$ is true; Similarly for blue and yellow If a vertex can get multiple colors, pick any one of them $c(\mathbb{1}_{\neq v}) = 1$ every vertex v can get at least one color \implies $T_R(\mathbb{1}_{\not\in(u,v)}) = T_B(\mathbb{1}_{\not\in(u,v)}) = T_Y(\mathbb{1}_{\not\in(u,v)}) = 0$ $c(\mathbb{1}_{\not\in(u,v)}) = 0$ \iff When is $T_R(\mathbb{1}_{\not\in(u,v)})$ false? Let P be the set of vertices whose positive literal appears in T_R ; Likewise N for negative $T_R(\mathbb{1}_{\not\in(u,v)})$ is false $\iff u \in P$ or $v \in P$ or some vertex $w \in N$ is distinct from u, vif $u \in P$ then $T_R(\mathbb{1}_{\neq u}) = 0$ and u cannot be red (Likewise $v \in P$ implies v cannot be red) if some $w \in N \setminus \{u, v\}$, then $T_R(\mathbb{1}_{\neq u}) = 0$ and u cannot be red (and neither can v) Thus $T_R(\mathbb{1}_{\notin(u,v)}) = 0$ implies at least one of u or v can't be red $T_R(\mathbb{1}_{\mathcal{A}(u,v)}) = T_B(\mathbb{1}_{\mathcal{A}(u,v)}) = T_Y(\mathbb{1}_{\mathcal{A}(u,v)}) = 0$ means u and v can't get the same color

In general