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Notes 10: Hypothesis testing

1. Chernoff bounds

Due to Herman Rubin
X1, . . . , Xm independent {0, 1}-valued random variables

s.t. P[Xi = 1] = E[Xi] = p for 1 ⩽ i ⩽ m

X
def
= X1 + · · ·+Xm (E[X] = mp)

Theorem 1 (Multiplicative Chernoff). For all 0 ⩽ γ ⩽ 1,

P[X ⩽ (1− γ)mp] ⩽ e−
1
2
γ2mp

P[X ⩾ (1 + γ)mp] ⩽ e−
1
3
γ2mp

Also true for X1, . . . , Xm independent [0, 1]-valued (i.e. bounded) random variables
Many proofs; see e.g. Mulzer “Five Proofs of Chernoff’s Bound with Applications” if interested
Exponential decay

2. Hypothesis testing

Fix h ∈ H, how can we test whether h is bad? (i.e. errD(h, c) = Px∈D[h(x) ̸= c(x)] ⩾ ε)
Solution: Draw m independent labelled samples (x1, c(x1)), . . . , (xm, c(xm)),

Compute (empirical error) êrr def
=

#samples s.t. h(xi) ̸= c(xi)

m
By Chernoff bound, êrr ≈ errD(h, c)
e.g. If h is bad, p def

= errD(h, c) ⩾ ε,

P
[
êrr ⩽ ε

2

]
⩽ e−

1
8
mp ⩽ e−

1
8
εm

Further Improved Algorithm: Similar to Improved Algorithm
But only cover 1− ε/2 fraction of positive samples using Si1 , . . . , Sik

Number of sets needed k ⩽ OPT · ln(2/ε) (why?)
Can show that O

(
1
ε (ln

1
δ + s ln 1

ε lnn)
)

samples suffices (exercise)
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