CSCI4230 Computational Learning Theory Spring 2021 *Lecturer: Siu On Chan Based on Rocco Servedio's notes*

Notes 9: Occam's Razor

1. Hypothesis class

Hypothesis class $H =$ **set of hypotheses the learning algorithm may output** Usually $H \supseteq C$, but can sometimes be bigger

e.g. Winnow1 learns $C = \{k\text{-sparse monotone disjunctions}\}\$ using $H = \{\text{LTFs with } \geq 0 \text{ weights}\}\$ **Proper learning**: Algorithm required to output $h \in \mathcal{C}$, i.e. $\mathcal{H} = \mathcal{C}$ **Improper learning**: Algorithm allowed to output $h \notin C$, i.e. $H \supseteq C$

2. Consistent hypotheses

Fix concept class $\mathcal C$ and finite hypothesis class $\mathcal H$

Consistent Hypothesis Algorithm

Given labelled samples, output any $h \in \mathcal{H}$ consistent with all samples

Call hypothesis *h* bad if $err_{\mathcal{D}}(h, c) \geq \varepsilon$

Theorem 1. *For any distribution D over instance space X, given m independent samples from* $EX(c, \mathcal{D}), \text{ if } m \geqslant \frac{1}{\varepsilon}$ $\frac{1}{\varepsilon}$ ln($|\mathcal{H}|/\delta$)*, then*

 $\mathbb{P}[\text{some bad hypothesis in } \mathcal{H} \text{ consistent with all samples}] \leq \delta$

Better bound than Halving Algorithm + Online-to-PAC conversion

Proof. For any bad $h \in \mathcal{H}$

 $\mathbb{P}[h \text{ consistent with all } m \text{ samples}] \leq (1 - \varepsilon)^m \leqslant e^{-\varepsilon m} = \delta/|\mathcal{H}|$

Union bound:

 $\mathbb{P}[\text{some bad hypothesis in } \mathcal{H} \text{ consistent with all samples}] \leq \mathcal{H} \cdot (\delta/|\mathcal{H}|) = \delta$

In other words, $|\mathcal{H}| \leqslant \delta e^{\varepsilon m}$

Occam's Razor: Scientific principle to favour simpler hypotheses PAC learning algorithm due to small hypothesis class

Simple hypothesis *≈* hypothesis with short description *≈* small number of hypotheses

3. PAC learning sparse disjunctions

 $\mathcal{C} = \{\text{disjunctions}\}\text{ over } X = \{0, 1\}^n$ $s \stackrel{\text{def}}{=} \text{size}(c)$ How to PAC learn $\mathcal C$ efficiently?

(1) Elimination Algorithm + Online-to-PAC conversion: $O\left(\frac{n}{\epsilon}\right)$ $\frac{n}{\varepsilon} \ln \frac{n}{\delta}$ samples *≈ n ε* ignoring log factors (2) Winnow1 + Online-to-PAC conversion: \int $\frac{s \ln n}{n}$ $\frac{\ln n}{\varepsilon} \ln \frac{s \ln n}{\delta}$) samples

- *≈ s ε* ignoring log factors Better dependence on *n*; Good for small *s*
	- But improper

(3) Consistent Hypothesis Algorithm: (*s* $\frac{s}{\varepsilon} \ln \frac{n}{\delta}$) samples

Because $|\mathcal{H}| = \binom{n}{s}$ $\binom{n}{s} 2^s \leqslant (2n)^s$ $(\mathcal{H} \stackrel{\text{def}}{=} \{s\text{-sparse disjunctions}\})$

Even better dependence on *n* and *s*

But inefficient! (need $|\mathcal{H}| \approx n^s$ time, not $\text{poly}(n, 1/\varepsilon, 1/\delta, s)$)

(4) (Below) efficient algorithm using $O\left(\frac{1}{\varepsilon}\right)$ $\frac{1}{\varepsilon}$ (ln $\frac{1}{\delta}$ + *s* ln $\frac{1}{\varepsilon}$ ln *n*)) samples

≈ s ε ignoring log factors; Good dependence on *s* and *n*

Idea 1: Find consistent disjunction quickly using Greedy Heuristic for Set Cover Idea 2: Further reduce *|H|* by hypothesis testing

4. SET COVER

A computational problem (not originated from learning) **Input:** Universe $U = \{1, \ldots, m\}$ of \overline{m} elements and subsets $S_1, \ldots, S_r \subseteq U$ **Goal:** Find smallest collection S_{i_1}, \ldots, S_{i_k} of given subsets to cover U (i.e. $S_{i_1} \cup \cdots \cup S_{i_k} = U$)

Set Cover is NP-hard (as hard as thousands other problems conjectured to be intractable) We settle for an approximation algorithm that outputs a nearly optimal solution

Greedy Heuristic

For $t = 1, 2, \ldots$ until *U* is covered Pick largest subset S_{i_t} Remove from every subset S_j all elements in S_{i_t} (i.e. S_j becomes $S_j \setminus S_{i_t}$)

Theorem 2. *Greedy Heuristic always outputs a cover with* \leq OPT \cdot ln *m many sets*

Proof. Let $T_t \subseteq U$ denote set of uncovered elements after iteration *t* (initially $T_0 = U$) **Claim:** Largest subset S_{i_t} at iteration *t* covers $\geq 1/\text{OPT}$ fraction of T_{t-1} Reason: Uncovered elements are covered by OPT sets; largest set must co Uncovered elements are covered by OPT sets; largest set must cover $\geq 1/\text{OPT}$ fraction Using Claim,

$$
|T_t| \leq \left(1 - \frac{1}{\text{OPT}}\right)|T_{t-1}| \leq \dots \leq \left(1 - \frac{1}{\text{OPT}}\right)^t m < e^{-t/\text{OPT}}m
$$

$$
\leq 1 \quad \text{if } t \geq \text{OPT} \cdot \ln m
$$

Elimination Algorithm $+$ conversion only uses negative samples

Keep removing literals x_i or \overline{x}_i that contradicts a negative sample All literals in *c* are also in *h* (*h* automatically consistent with all positive samples) Improved algorithm further uses positive samples to shorten *h* (and hence shrink \mathcal{H}) Find a few literals to "explain" (i.e. cover) all positive samples *c* contains *s* literals, all positive samples can be "covered" with *s* literals Can quickly find a cover using $s \ln m$ literals $(m = #$ positive samples) Improved algorithm $\{y_1, \ldots, y_r\}$ = set of literals that are consistent with all negative examples i.e. if literal y_i is true in some negative sample, then y_i is excluded For $1 \leq i \leq r$, let S_i = set of positive samples where y_i is true Find a set cover S_{i_1}, \ldots, S_{i_k} using $k = s \ln m$ sets Hypothesis $h = y_{i_1} \vee \cdots \vee y_{i_k}$

 $|\mathcal{H}| = \binom{n}{\sin n}$ $\binom{n}{s \ln m} 2^{s \ln m} \leqslant (2n)^{s \ln m}$ $\text{Need } |\mathcal{H}| \leqslant \delta e^{\varepsilon m}$ True if $(2n)^{s \ln m} \leqslant \delta e^{\varepsilon m} \iff s(\ln m) \ln 2n + \ln(1/\delta) \leqslant \varepsilon m$ Can show that $m \geqslant \Omega\left(\frac{1}{\varepsilon}\right)$ $\frac{1}{\varepsilon}(\ln(1/\delta) + s(\ln n)\ln(s\ln n)))$ (details omitted)