CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 9: Occam’s Razor

1. HYPOTHESIS CLASS

Hypothesis class H = set of hypotheses the learning algorithm may output
Usually H O C, but can sometimes be bigger
e.g. Winnowl learns C = {k-sparse monotone disjunctions} using # = {LTFs with > 0 weights}
Proper learning: Algorithm required to output h € C, i.e. H=C
Improper learning: Algorithm allowed to output h ¢ C, i.e. H 2 C

2. CONSISTENT HYPOTHESES

Fix concept class C and finite hypothesis class H

Consistent Hypothesis Algorithm
(Given labelled samples, output any h € H consistent with all samples

Call hypothesis h bad if errp(h,c) > €

Theorem 1. For any distribution D over instance space X, given m independent samples from
EX(c, D), if m > LIn(|H|/6), then

P[some bad hypothesis in H consistent with all samples] < §
Better bound than Halving Algorithm + Online-to-PAC conversion

Proof. For any bad h € H
P[h consistent with all m samples] < (1 —¢)™ < e ™ =4§/|H]

Union bound:

P[some bad hypothesis in H consistent with all samples] < |H|- (§/|H|) =6 O
In other words, |H| < de™
Occam’s Razor: Scientific principle to favour simpler hypotheses

PAC learning algorithm due to small hypothesis class
Simple hypothesis ~ hypothesis with short description ~ small number of hypotheses

3. PAC LEARNING SPARSE DISJUNCTIONS
C = {disjunctions} over X ={0,1}" s & size(c)
How to PAC learn C efficiently?

(1) Elimination Algorithm + Online-to-PAC conversion: O (£1n %) samples
~ 7 ignoring log factors

(2) Winnowl + Online-to-PAC conversion: O (81% In 51%) samples
~ 2 ignoring log factors
Better dependence on n; Good for small s
But improper
(3) Consistent Hypothesis Algorithm: @) (f In %) samples
Because |H| = (7)2% < (2n)* (H o {s-sparse disjunctions})
Even better dependence on n and s
But inefficient! (need |H| =~ n® time, not poly(n,1/e,1/4,s))
(4) (Below) efficient algorithm using O (%(ln% +sln % Inn)) samples
~ 2 ignoring log factors; Good dependence on s and n

Idea 1: Find consistent disjunction quickly using Greedy Heuristic for Set Cover
Idea 2: Further reduce |H| by hypothesis testing

4. SET COVER

A computational problem (not originated from learning)
Input: Universe U = {1,...,m} of m elements and subsets Si,..., S, CU
Goal: Find smallest collection S;,...,S;, of given subsets to cover U (i.e. S;; U---US;, =U)

i

Set Cover is NP-hard (as hard as thousands other problems conjectured to be intractable)
We settle for an approximation algorithm that outputs a nearly optimal solution

Greedy Heuristic
Fort =1,2,... until U is covered
Pick largest subset S;,
Remove from every subset S; all elements in S;, (i.e. Sj becomes S; \ S;,)

Theorem 2. Greedy Heuristic always outputs a cover with < OPT -Ilnm many sets

Proof. Let Ty C U denote set of uncovered elements after iteration ¢ (initially Tp = U)
Claim: Largest subset S;, at iteration t covers > 1/ OPT fraction of T;_;

Reason: Uncovered elements are covered by OPT sets; largest set must cover > 1/ OPT fraction
Using Claim,

1 1 t
‘Tt‘ < <1_OPT> ’Tt—1’ <... < <1—OPT> m<€—t/OPTm
<1 ift > OPT - -Inm 0

Elimination Algorithm + conversion only uses negative samples
Keep removing literals z; or T; that contradicts a negative sample
All literals in ¢ are also in A (h automatically consistent with all positive samples)
Improved algorithm further uses positive samples to shorten h (and hence shrink H)
Find a few literals to “explain” (i.e. cover) all positive samples
c contains s literals, all positive samples can be “covered” with s literals
Can quickly find a cover using slnm literals (m = #positive samples)

_Improved algorithm

{y1,...,yr} = set of literals that are consistent with all negative examples
i.e. if literal y; is true in some negative sample, then y; is excluded

For 1 <i < r,let S; = set of positive samples where y; is true

Find a set cover S;,,...,5;, using k = slnm sets

Hypothesis h = y;; V-V y;,

’H| — (Slgm)Qslnm < (2n)slnm
Need [H| < 0e™
True if (2n)°1"™ < §e™ <= s(lnm)In2n +In(1/6) < em

Can show that m > Q (2(In(1/6) + s(lnn) In(slnn))) suffices (details omitted)

	1. Hypothesis class
	2. Consistent hypotheses
	3. PAC learning sparse disjunctions
	4. Set Cover

