
CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 9: Occam’s Razor

1. Hypothesis class

Hypothesis class H = set of hypotheses the learning algorithm may output
Usually H ⊇ C, but can sometimes be bigger

e.g. Winnow1 learns C = {k-sparse monotone disjunctions} using H = {LTFs with ⩾ 0 weights}
Proper learning: Algorithm required to output h ∈ C, i.e. H = C
Improper learning: Algorithm allowed to output h /∈ C, i.e. H ⊋ C

2. Consistent hypotheses

Fix concept class C and finite hypothesis class H
Consistent Hypothesis Algorithm

Given labelled samples, output any h ∈ H consistent with all samples

Call hypothesis h bad if errD(h, c) ⩾ ε

Theorem 1. For any distribution D over instance space X, given m independent samples from
EX(c,D), if m ⩾ 1

ε ln(|H|/δ), then
P[some bad hypothesis in H consistent with all samples] ⩽ δ

Better bound than Halving Algorithm + Online-to-PAC conversion
Proof. For any bad h ∈ H

P[h consistent with all m samples] ⩽ (1− ε)m ⩽ e−εm = δ/|H|
Union bound:

P[some bad hypothesis in H consistent with all samples] ⩽ |H| · (δ/|H|) = δ □
In other words, |H| ⩽ δeεm

Occam’s Razor: Scientific principle to favour simpler hypotheses
PAC learning algorithm due to small hypothesis class

Simple hypothesis ≈ hypothesis with short description ≈ small number of hypotheses

3. PAC learning sparse disjunctions

C = {disjunctions} over X = {0, 1}n s
def
= size(c)

How to PAC learn C efficiently?
(1) Elimination Algorithm + Online-to-PAC conversion: O

(
n
ε ln n

δ

)
samples

≈ n
ε ignoring log factors

(2) Winnow1 + Online-to-PAC conversion: O
(
s lnn
ε ln s lnn

δ

)
samples

≈ s
ε ignoring log factors

Better dependence on n; Good for small s
But improper

(3) Consistent Hypothesis Algorithm: O
(
s
ε ln n

δ

)
samples

Because |H| =
(
n
s

)
2s ⩽ (2n)s (H def

= {s-sparse disjunctions})
Even better dependence on n and s
But inefficient! (need |H| ≈ ns time, not poly(n, 1/ε, 1/δ, s))

(4) (Below) efficient algorithm using O
(
1
ε (ln

1
δ + s ln 1

ε lnn)
)

samples
≈ s

ε ignoring log factors; Good dependence on s and n
Idea 1: Find consistent disjunction quickly using Greedy Heuristic for Set Cover
Idea 2: Further reduce |H| by hypothesis testing

1

2

4. Set Cover

A computational problem (not originated from learning)
Input: Universe U = {1, . . . ,m} of m elements and subsets S1, . . . , Sr ⊆ U
Goal: Find smallest collection Si1 , . . . , Sik of given subsets to cover U (i.e. Si1 ∪ · · · ∪ Sik = U)

Set Cover is NP-hard (as hard as thousands other problems conjectured to be intractable)
We settle for an approximation algorithm that outputs a nearly optimal solution
Greedy Heuristic

For t = 1, 2, . . . until U is covered
Pick largest subset Sit

Remove from every subset Sj all elements in Sit (i.e. Sj becomes Sj \ Sit)

Theorem 2. Greedy Heuristic always outputs a cover with ⩽ OPT · lnm many sets

Proof. Let Tt ⊆ U denote set of uncovered elements after iteration t (initially T0 = U)
Claim: Largest subset Sit at iteration t covers ⩾ 1/OPT fraction of Tt−1

Reason: Uncovered elements are covered by OPT sets; largest set must cover ⩾ 1/OPT fraction
Using Claim,

|Tt| ⩽
(
1− 1

OPT

)
|Tt−1| ⩽ . . . ⩽

(
1− 1

OPT

)t

m < e−t/OPTm

⩽ 1 if t ⩾ OPT · lnm □

Elimination Algorithm + conversion only uses negative samples
Keep removing literals xi or xi that contradicts a negative sample
All literals in c are also in h (h automatically consistent with all positive samples)

Improved algorithm further uses positive samples to shorten h (and hence shrink H)
Find a few literals to “explain” (i.e. cover) all positive samples
c contains s literals, all positive samples can be “covered” with s literals
Can quickly find a cover using s lnm literals (m = #positive samples)

Improved algorithm
{y1, . . . , yr} = set of literals that are consistent with all negative examples

i.e. if literal yi is true in some negative sample, then yi is excluded
For 1 ⩽ i ⩽ r, let Si = set of positive samples where yi is true
Find a set cover Si1 , . . . , Sik using k = s lnm sets
Hypothesis h = yi1 ∨ · · · ∨ yik

|H| =
(

n
s lnm

)
2s lnm ⩽ (2n)s lnm

Need |H| ⩽ δeεm

True if (2n)s lnm ⩽ δeεm ⇐⇒ s(lnm) ln 2n+ ln(1/δ) ⩽ εm
Can show that m ⩾ Ω

(
1
ε (ln(1/δ) + s(lnn) ln(s lnn))

)
suffices (details omitted)

	1. Hypothesis class
	2. Consistent hypotheses
	3. PAC learning sparse disjunctions
	4. Set Cover

