CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 8: Online to PAC conversion

1. ONLINE TO PAC

Theorem 1. If online algorithm A learns C with < M mistakes, then some algorithm PAC-learns C
using

M+1. M
m = In — samples
€ 4]
Proof. Can assume A only updates its hypothesis after making a mistake (homework)
PAC Learning Algorithm

Keep feeding to A independent samples from EX(c, D)
Until A correctly classifies %ln % samples in a row
Then output A’s current (i.e. last) hypothesis h

A’s predictions:

hl hz hlast
Y /X -/ X (repeat < M times) vV - V)
—_———

<éln% <%ln% g%ln%

< M + 1 hypotheses, each applied to < %ln % samples

#samples used < @ In %

We now argue final hypothesis hj,q¢ has error < & with prob. > 1—§

If errp(hs, c) > e: P [hi correct k & % In % times} <(1-e)lf ek = %
A uses < M + 1 hypotheses hq, ..., hast
Plany of them has error > € and correct k times|] < M - % =9
Union bound over M (not M + 1) because if hjast = hps41 then hp,g has zero error
for otherwise A may make M + 1 mistakes U

If A efficient, so is its PAC version
Implies PAC learning algorithms for

e.g. (sparse) conjuctions/disjunctions, short decision lists, well-seperated LTFs
e.g. monotone disjunctions: Elimination Algorithm makes < n mistakes

its PAC version uses O (g In (%)) samples

2. PAC 1o ONLINE? NO

X = unit interval = [0, 1] C = initial intervals = {[0,b] | 0 < b < 1}
where [0,b] = {x € R| 0 <z < b}
Can be PAC learned with (1/¢)1n(1/0) samples (same idea as axis-aligned rectangles)

Claim 2. Any algorithm A for learning closed intervals over [0,1] in the Online model makes an
arbitrarily large number of mistakes

Proof. The adversary below forces A to always err
_Adversary
Initially I = [0, 1]
Repeat
Set x = midpoint of
Feed x to A and gets A’s prediction
Label x opposite to A’s prediction
If 2’s correct label is 0, shrinks I by keeping only its left half, else keep only its right half
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e.g. 1st round ! = 1/2, if A predicts ! as 0, then label 2! as 1, update I as [1/2,1]

ol ozt 2?22
DD
0 195 3 1
2 16 8 4
All positive samples to the left of all negative samples
Some initial interval correctly classifies all labelled samples so far O

X above is infinite
How about finite X?
Efficient PAC algorithm for C over finite X implies efficient online algorithm with few mistakes?
Previous example of initial intervals (now over X = {1,2,...,n}) has efficient online algorithm
namely Halving algorithm with < logn mistakes
In fact Halving algorithm has very efficient implementation in this case (binary search)
Under reasonable cryptographic assumptions, still no PAC-to-online conversion for finite X = {0,1}"
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