
CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 7: PAC model

1. Probably Approximately Correct

Valiant’84 “Theory of the Learnable”; Turing Award’14
Average case performance wrt a fixed instance distribution
Assume instances x ∈ X are drawn from a distribution D (unknown and arbitrary)
(Training phase) Given independent samples (x, c(x)), all labelled by an unknown concept c ∈ C
Goal: Output hypothesis h ⊆ X s.t. errD(h, c) := Px∼D[h(x) ̸= c(x)] is small
Equivalently errD(h, c) = Px∼D[x ∈ h△ c]
Recall h△ c := (h \ c) ∪ (c \ h) (symmetric difference)

c
h

X

error region = h△ c
Want small error region under D

errD(h, c) > 0 unavoidable: some x ∼ D falls inside the error region
Error cannot always be small: if unlucky, training samples may be useless
New goal: With high probability over training samples and internal randomness (probably), output
hypothesis h ⊆ X with small error (approximately correct)

EX(c,D) = distribution of labelled samples (x, c(x)) when x is drawn from D
Algorithm A PAC learns C if

for any concept c ∈ C
for any distribution D over X
for any confidence parameter δ > 0 and accuracy parameter ε > 0
when A takes m samples from EX(c,D)
with probability ⩾ 1− δ over the samples and A’s randomness
output hypothesis h ⊆ X such that errD(h, c) ⩽ ε

A is efficient if runs in poly(1/δ, 1/ε) time (plus two more conditions below)
poly(1/δ, 1/ε) means at most polynomial in 1/δ and 1/ε (e.g. at most ε−2δ−1)
or poly(n, 1/δ, 1/ε) time if X = {0, 1}n or Rn

Run time always ⩾ m (just to read the samples)

Algorithm A only knows C, δ, ε
A doesn’t know D (distribution independent learning)
A works under any D (strong assumption!), but error is also evaluated under D

2. PAC learning rectangles

X = the plane = R2 C = axis-aligned rectangles = {R(x1, y1, x2, y2) | x1, y1, x2, y2 ∈ R}
where R(x1, y1, x2, y2) = {(x, y) ∈ R2 | x1 ⩽ x ⩽ x2 and y1 ⩽ y ⩽ y2}

D = fixed distribution over R2 (unknown)
Algorithm

Hypothesis h = smallest rectangle containing all positive samples (∅ if no positive samples)

Claim 1. Given any c ∈ C, if m ⩾ (4/ε) ln(4/δ), with probability ⩾ 1 − δ, the Algorithm outputs
hypothesis h with errD(h, c) ⩽ ε.

Proof. h ⊆ c always
Want to show h△ c = c \ h small under D
Case 1: c has probability mass at least ε/4 under D
Can decompose c \ h as union of four strips: top, left, bottom, right

1



2

Top strip T = rectangle sharing top & left & right sides with c, has probability mass ε/4 under D

T
c′

c

Left, bottom, right strips defined analogously
c′ = c with top, left, bottom, right strips removed
Claim: c′ ⊆ h with probability ⩾ 1− δ
Reason: if each strip contains a sample, then c′ ⊆ h

top strip has no sample with probability (1− ε/4)m

same for other strips, union bound:
P[some strip has no sample] ⩽ 4(1− ε/4)m ⩽ 4(e−ε/4)m ⩽ δ

c′ ⊆ h implies errD(h, c) ⩽ ε
because each strip has probability mass ε/4 under D

Case 2: c has probability mass less than ε/4 under D
Then c \ h must have probability mass less than ε □

3. Hypothesis size

some concepts c(x) have a natural size (e.g. #bits needed to describe c)
e.g. C = DNF formulae over X = {0, 1}n
every boolean function f : X → {0, 1} can be represented as a DNF

some as a 2-term DNF (e.g. f(x) = (x1 ∧ x2 ∧ x6) ∨ (x9 ∧ x4 ∧ x2))
some requires ⩾ 2

√
n terms

size(f) = size of the smallest representation of f in C
e.g. when C = {DNF}, sometimes size(f) may be #terms

Redefinition: PAC learning Algorithm A is efficient if runs in time poly(1/δ, 1/ε, size(c))
or poly(n, 1/δ, 1/ε, size(c)) if X = {0, 1}n or Rn

c = target concept
in particular, A cannot output h with large size(h)
Algorithm knows C, δ, ε, size(c)

Some C may not have interesting size measure; size can be ignored
e.g. monotone conjunctions have size ⩽ n

4. Efficient hypothesis

Often PAC learning Algorithm A outputs hypothesis h : X → {0, 1} that is itself a program
Not useful if h too slow
If X = {0, 1}n or Rn, hypothesis h is polynomially evaluatable if h runs in poly(n) time
PAC learning Algorithm A is efficient if it additionally outputs polynomially evaluatable hypothesis
e.g. inefficient A:

stores all training samples in h
then h exhaustively searches for smallest DNF consistent with all training samples


	1. Probably Approximately Correct
	2. PAC learning rectangles
	3. Hypothesis size
	4. Efficient hypothesis

