CSCI4230 Computational Learning Theory Spring 2021 *Lecturer: Siu On Chan Based on Rocco Servedio's notes*

Notes 7: PAC model

1. Probably Approximately Correct

Valiant'84 "*Theory of the Learnable*"; Turing Award'14 Average case performance wrt a fixed instance distribution Assume instances $x \in X$ are drawn from a distribution D (unknown and arbitrary) (Training phase) Given independent samples $(x, c(x))$, all labelled by an unknown concept $c \in \mathcal{C}$ **Goal:** Output hypothesis $h \subseteq X$ s.t. $\text{err}_{\mathcal{D}}(h, c) := \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)]$ is small Equivalently $\text{err}_{\mathcal{D}}(h, c) = \mathbb{P}_{x \sim \mathcal{D}}[x \in h \triangle c]$ Equivalently $\text{err}_{\mathcal{D}}(h, c) = \mathbb{P}_{x \sim \mathcal{D}}[x \in h \triangle c]$
Recall $h \triangle c := (h \setminus c) \cup (c \setminus h)$ (symmetric difference) $h \triangle c := (h \setminus c) \cup (c \setminus h)$ *c h X* error region = $h \triangle c$ Want small error region under *D*

 $\text{err}_{\mathcal{D}}(h, c) > 0$ unavoidable: some $x \sim \mathcal{D}$ falls inside the error region Error cannot always be small: if unlucky, training samples may be if unlucky, training samples may be useless **New goal:** With high probability over training samples and internal randomness (*probably*), output hypothesis $h \subseteq X$ with small error (*approximately correct*)

 $EX(c, \mathcal{D}) =$ distribution of labelled samples $(x, c(x))$ when x is drawn from \mathcal{D} Algorithm A **PAC** learns C if for any concept $c \in \mathcal{C}$ for any distribution *D* over *X* for any **confidence** parameter $\delta > 0$ and **accuracy** parameter $\varepsilon > 0$ when *A* takes *m* samples from $EX(c, \mathcal{D})$ with probability $\geq 1 - \delta$ over the samples and *A*'s randomness output hypothesis $h \subseteq X$ such that $\text{err}_{\mathcal{D}}(h, c) \leq \varepsilon$
efficient if runs in poly $(1/\delta, 1/\varepsilon)$ time (plus two more conditions below) *A* is **efficient** if runs in poly $(1/\delta, 1/\varepsilon)$ time poly $(1/\delta, 1/\varepsilon)$ means at most polynomial in $1/\delta$ and $1/\varepsilon$. *−*2 *δ −*1) or $\text{poly}(n, 1/\delta, 1/\varepsilon)$ time if $X = \{0, 1\}^n$ or \mathbb{R}^n Run time always $\geqslant m$ (just to read the samples)

Algorithm *A* only knows *C, δ, ε*

A doesn't know *D* (distribution independent learning)

A works under **any** *D* (strong assumption!), but error is also evaluated under *D*

2. PAC learning rectangles

 $X =$ the plane $= \mathbb{R}^2$ $\mathcal{C} =$ axis-aligned rectangles = $\{R(x_1, y_1, x_2, y_2) | x_1, y_1, x_2, y_2 \in \mathbb{R}\}\$ where $R(x_1, y_1, x_2, y_2) = \{(x, y) \in \mathbb{R}^2 \mid x_1 \le x \le x_2 \text{ and } y_1 \le y \le y_2\}$ $D =$ fixed distribution over \mathbb{R}^2 (unknown) Algorithm

Hypothesis $h =$ smallest rectangle containing all positive samples (\emptyset if no positive samples)

Claim 1. *Given any* $c \in \mathcal{C}$ *, if* $m \geqslant (4/\varepsilon) \ln(4/\delta)$ *, with probability* $\geqslant 1 - \delta$ *, the Algorithm outputs hypothesis h* with $err_{\mathcal{D}}(h, c) \leq \varepsilon$.

Proof. $h \subseteq c$ always Want to show $h \triangle c = c \setminus h$ small under D **Case 1:** *c* has probability mass at least $\varepsilon/4$ under \mathcal{D} Can decompose $c \setminus h$ as union of four strips: top, left, bottom, right

Left, bottom, right strips defined analogously $c' = c$ with top, left, bottom, right strips removed

Claim: $c' \subseteq h$ with probability $\geq 1 - \delta$

Reason: if each strip contains a sample, then $c' \subseteq h$ top strip has no sample with probability $(1 - \varepsilon/4)^m$ same for other strips, union bound:

$$
\mathbb{P}[\text{some strip has no sample}] \leq 4(1 - \varepsilon/4)^m \leq 4(e^{-\varepsilon/4})^m \leq \delta
$$

 $c' \subseteq h$ implies $\text{err}_{\mathcal{D}}(h, c) \leqslant \varepsilon$

because each strip has probability mass *ε*/4 under *D*

Case 2: *c* has probability mass less than $\varepsilon/4$ under \mathcal{D}

Then $c \setminus h$ must have probability mass less than ε □

3. Hypothesis size

some concepts $c(x)$ have a natural **size** (e.g. #bits needed to describe *c*) e.g. $C = \text{DNF}$ formulae over $X = \{0, 1\}^n$ every boolean function $f: X \to \{0,1\}$ can be represented as a DNF some as a 2-term DNF $(e.g. f(x) = (\overline{x}_1 \wedge \overline{x}_2 \wedge x_6) \vee (x_9 \wedge \overline{x}_4 \wedge x_2))$ some requires $\geqslant 2^{\sqrt{n}}$ terms size(f) = size of the smallest representation of f in $\mathcal C$ e.g. when $C = \{DNF\}$, sometimes size(*f*) may be #terms Redefinition: PAC learning Algorithm *A* is **efficient** if runs in time $\text{poly}(1/\delta, 1/\varepsilon, \text{size}(c))$ or $\text{poly}(n, 1/\delta, 1/\varepsilon, \text{size}(c))$ if $X = \{0, 1\}^n$ or \mathbb{R}^n $c = \text{target concept}$ in particular, A cannot output h with large size(h) Algorithm knows *C, δ, ε,*size(*c*) Some C may not have interesting size measure; size can be ignored e.g. monotone conjunctions have size $\leq n$

4. Efficient hypothesis

Often PAC learning Algorithm *A* outputs hypothesis $h: X \to \{0,1\}$ that is itself a **program** Not useful if *h* too slow

If $X = \{0,1\}^n$ or \mathbb{R}^n , hypothesis *h* is **polynomially evaluatable** if *h* runs in poly(*n*) time PAC learning Algorithm *A* is **efficient** if it additionally outputs polynomially evaluatable hypothesis e.g. inefficient *A*:

stores all training samples in *h*

then *h* exhaustively searches for smallest DNF consistent with all training samples