Lecturer: Siu On Chan

Notes 7: PAC model

1. Probably Approximately Correct

Valiant'84 "Theory of the Learnable";

Turing Award'14

Average case performance wrt a fixed instance distribution

Assume instances $x \in X$ are drawn from a distribution \mathcal{D} (unknown and arbitrary)

(Training phase) Given independent samples (x, c(x)), all labelled by an unknown concept $c \in \mathcal{C}$

Goal: Output hypothesis $h \subseteq X$ s.t. $\operatorname{err}_{\mathcal{D}}(h,c) := \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq c(x)]$

Equivalently $\operatorname{err}_{\mathcal{D}}(h,c) = \mathbb{P}_{x \sim \mathcal{D}}[x \in h \triangle c]$

Recall $h \triangle c := (h \setminus c) \cup (c \setminus h)$

(symmetric difference)

error region = $h \triangle c$ Want small error region under \mathcal{D}

 $\operatorname{err}_{\mathcal{D}}(h,c) > 0$ unavoidable: some $x \sim \mathcal{D}$ falls inside the error region

Error cannot always be small: if unlucky, training samples may be useless

New goal: With high probability over training samples and internal randomness (*probably*), output hypothesis $h \subseteq X$ with small error (*approximately correct*)

 $\mathrm{EX}(c,\mathcal{D}) = \mathrm{distribution}$ of labelled samples (x,c(x)) when x is drawn from \mathcal{D}

Algorithm A **PAC** learns C if

for any concept $c \in \mathcal{C}$

for any distribution \mathcal{D} over X

for any **confidence** parameter $\delta > 0$ and **accuracy** parameter $\varepsilon > 0$

when A takes m samples from $\mathrm{EX}(c,\mathcal{D})$

with probability $\geq 1 - \delta$ over the samples and A's randomness

output hypothesis $h \subseteq X$ such that $\operatorname{err}_{\mathcal{D}}(h, c) \leqslant \varepsilon$

A is efficient if runs in poly $(1/\delta, 1/\varepsilon)$ time (plus two more conditions below)

 $\operatorname{poly}(1/\delta, 1/\varepsilon)$ means at most polynomial in $1/\delta$ and $1/\varepsilon$ (e.g. at most $\varepsilon^{-2}\delta^{-1}$)

or poly $(n, 1/\delta, 1/\varepsilon)$ time if $X = \{0, 1\}^n$ or \mathbb{R}^n

Run time always $\geqslant m$ (just to read the samples)

Algorithm A only knows C, δ, ε

A doesn't know \mathcal{D} (distribution independent learning)

A works under any \mathcal{D} (strong assumption!), but error is also evaluated under \mathcal{D}

2. PAC LEARNING RECTANGLES

 $X = \text{the plane} = \mathbb{R}^2$ $C = \text{axis-aligned rectangles} = \{R(x_1, y_1, x_2, y_2) \mid x_1, y_1, x_2, y_2 \in \mathbb{R}\}$ where $R(x_1, y_1, x_2, y_2) = \{(x, y) \in \mathbb{R}^2 \mid x_1 \leqslant x \leqslant x_2 \text{ and } y_1 \leqslant y \leqslant y_2\}$

 $\mathcal{D} = \text{fixed distribution over } \mathbb{R}^2 \text{ (unknown)}$

-Algorithm-

Hypothesis h = smallest rectangle containing all positive samples

 $(\emptyset \text{ if no positive samples})$

Claim 1. Given any $c \in C$, if $m \ge (4/\varepsilon) \ln(4/\delta)$, with probability $\ge 1 - \delta$, the Algorithm outputs hypothesis h with $\operatorname{err}_{\mathcal{D}}(h, c) \le \varepsilon$.

Proof. $h \subseteq c$ always

Want to show $h \triangle c = c \setminus h$ small under \mathcal{D}

Case 1: c has probability mass at least $\varepsilon/4$ under \mathcal{D}

Can decompose $c \setminus h$ as union of four strips: top, left, bottom, right

Top strip T = rectangle sharing top & left & right sides with c, has probability mass $\varepsilon/4$ under \mathcal{D}

Left, bottom, right strips defined analogously

c' = c with top, left, bottom, right strips removed

Claim: $c' \subseteq h$ with probability $\geq 1 - \delta$

Reason: if each strip contains a sample, then $c' \subseteq h$

top strip has no sample with probability $(1 - \varepsilon/4)^m$

same for other strips, union bound:

$$\mathbb{P}[\text{some strip has no sample}] \leq 4(1-\varepsilon/4)^m \leq 4(e^{-\varepsilon/4})^m \leq \delta$$

 $c' \subseteq h \text{ implies } \operatorname{err}_{\mathcal{D}}(h, c) \leqslant \varepsilon$

because each strip has probability mass $\varepsilon/4$ under \mathcal{D}

Case 2: c has probability mass less than $\varepsilon/4$ under \mathcal{D}

Then $c \setminus h$ must have probability mass less than ε

3. Hypothesis size

some concepts c(x) have a natural **size** (e.g. #bits needed to describe c)

e.g. C = DNF formulae over $X = \{0, 1\}^n$

every boolean function $f: X \to \{0,1\}$ can be represented as a DNF

some as a 2-term DNF (e.g. $f(x) = (\overline{x}_1 \wedge \overline{x}_2 \wedge x_6) \vee (x_9 \wedge \overline{x}_4 \wedge x_2))$

some requires $\geq 2^{\sqrt{n}}$ terms

size(f) = size of the smallest representation of f in C

e.g. when $\mathcal{C} = \{DNF\}$, sometimes size(f) may be #terms

Redefinition: PAC learning Algorithm A is **efficient** if runs in time poly $(1/\delta, 1/\varepsilon, \text{size}(c))$

or poly $(n, 1/\delta, 1/\varepsilon, \text{size}(c))$ if $X = \{0, 1\}^n$ or \mathbb{R}^n

c =target concept

in particular, A cannot output h with large size(h)

Algorithm knows $C, \delta, \varepsilon, \text{size}(c)$

Some \mathcal{C} may not have interesting size measure; size can be ignored

e.g. monotone conjunctions have size $\leq n$

4. Efficient hypothesis

Often PAC learning Algorithm A outputs hypothesis $h: X \to \{0,1\}$ that is itself a **program** Not useful if h too slow

If $X = \{0,1\}^n$ or \mathbb{R}^n , hypothesis h is **polynomially evaluatable** if h runs in poly(n) time

PAC learning Algorithm A is **efficient** if it additionally outputs polynomially evaluatable hypothesis e.g. inefficient A:

stores all training samples in h

then h exhaustively searches for smallest DNF consistent with all training samples