CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 7: PAC model

1. PROBABLY APPROXIMATELY CORRECT

Valiant’84 “ Theory of the Learnable”; Turing Award’14

Average case performance wrt a fixed instance distribution

Assume instances € X are drawn from a distribution D (unknown and arbitrary)

(Training phase) Given independent samples (z,c(x)), all labelled by an unknown concept ¢ € C
Goal: Output hypothesis h C X s.t. errp(h, ) := Pyplh(z) # c(z)] is small
Equivalently errp(h,c) = Prplz € h A (]

Recall he:=(h\c)U(c\h) (symmetric difference)

c X
h
error region = h A ¢
Want small error region under D
errp(h,c) > 0 unavoidable: some x ~ D falls inside the error region
Error cannot always be small: if unlucky, training samples may be useless

New goal: With high probability over training samples and internal randomness (probably), output
hypothesis h C X with small error (approzimately correct)

EX(c, D) = distribution of labelled samples (z, ¢(z)) when z is drawn from D
Algorithm A PAC learns C if
for any concept ¢ € C
for any distribution D over X
for any confidence parameter § > 0 and accuracy parameter € > 0
when A takes m samples from EX(c, D)
with probability > 1 — § over the samples and A’s randomness
output hypothesis h C X such that errp(h,c) < ¢
A is efficient if runs in poly(1/§,1/¢) time (plus two more conditions below)
poly(1/6,1/¢) means at most polynomial in 1/6 and 1/e (e.g. at most e 2571)
or poly(n,1/0,1/¢) time if X = {0,1}" or R"
Run time always > m (just to read the samples)

Algorithm A only knows C, d, e
A doesn’t know D (distribution independent learning)
A works under any D (strong assumption!), but error is also evaluated under D

2. PAC LEARNING RECTANGLES

X = the plane = R? C = axis-aligned rectangles = {R(z1,y1,T2,y2) | ©1,y1,T2,y2 € R}
where R(x1,y1,22,y2) = {(z,y) €R? |21 <z < z9 and y1 <y < 1o}
D = fixed distribution over R? (unknown)
Algorithm

( Hypothesis h = smallest rectangle containing all positive samples (0 if no positive samples)

Claim 1. Given any ¢ € C, if m > (4/¢)In(4/9), with probability > 1 — ¢, the Algorithm outputs
hypothesis h with errp(h,c) < €.

Proof. h C c always

Want to show h Ac = c\ h small under D

Case 1: ¢ has probability mass at least €/4 under D

Can decompose ¢\ h as union of four strips: top, left, bottom, right
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Top strip 7" = rectangle sharing top & left & right sides with ¢, has probability mass €/4 under D
T C

Left, bottom, right strips defined analogously
¢ = c with top, left, bottom, right strips removed
Claim: ¢ C h with probability > 1 — 46
Reason: if each strip contains a sample, then ¢ C h
top strip has no sample with probability (1 —e/4)™
same for other strips, union bound:

[P[some strip has no sample] < 4(1 —&/4)™ < 4(6*5/4)771 <46

¢ C h implies errp(h,c) < e
because each strip has probability mass /4 under D
Case 2: ¢ has probability mass less than £/4 under D
Then ¢\ h must have probability mass less than ¢ ]

3. HYPOTHESIS SIZE

some concepts ¢(x) have a natural size (e.g. #bits needed to describe ¢)
e.g. C = DNF formulae over X = {0,1}"
every boolean function f : X — {0,1} can be represented as a DNF
some as a 2-term DNF (e.g. f(z) = (@1 ANT2Aw6) V (xg ANTa A 2))
some requires > 2V terms
size(f) = size of the smallest representation of f in C
e.g. when C = {DNF}, sometimes size(f) may be #terms
Redefinition: PAC learning Algorithm A is efficient if runs in time poly(1/4, 1/e, size(c))
or poly(n,1/0,1/e,size(c)) if X ={0,1}" or R”
¢ = target concept
in particular, A cannot output h with large size(h)
Algorithm knows C, 4, £, size(c)
Some C may not have interesting size measure; size can be ignored
e.g. monotone conjunctions have size < n

4. EFFICIENT HYPOTHESIS

Often PAC learning Algorithm A outputs hypothesis h : X — {0, 1} that is itself a program
Not useful if A too slow
If X ={0,1}" or R™, hypothesis h is polynomially evaluatable if i runs in poly(n) time
PAC learning Algorithm A is efficient if it additionally outputs polynomially evaluatable hypothesis
e.g. inefficient A:
stores all training samples in h
then h exhaustively searches for smallest DNF consistent with all training samples
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