CSCI4230 Computational Learning Theory Spring 2021

Lecturer: Siu On Chan Based on Rocco Servedio's and Avrim Blum's notes

Notes 6: Weighted Majority

1. Online regret bound model

e.g. stock market prediction: guessing whether it will go up or down for each day A sequence of rounds/trials, each being:

- (1) A new unlabeled example *x* arrives
- (2) *n* experts reveal their opinions about the label for *x* (label is either 0 or 1)
- (3) Algorithm predicts 0 or 1 according to experts' opinions
- (4) Algorithm is told correct label for *x*

Goal: minimize number of mistakes, compared with the best expert If every "expert" makes many mistakes, algorithm may, too

2. Weighted Majority

Weighted Majority Fix parameter $0 \leq \beta < 1$ Initialize: $w_1 = \cdots = w_n = 1$ On input *x*, poll opinions from experts Compute total weight q_0 of experts predicting 0 and total weight q_1 predicting 1 Predict according to weighted majority (predict 0 if $q_0 > q_1$; predict 1 otherwise) On revealing correct label, penalize incorrect experts Multiply every incorrect expert *i*'s weight w_i by β

If $\beta = 0$, Weighted Majority algorithm becomes Halving algorithm

expert *←→* concept

expert *i*'s opinion in *j*th trial *←→* concept *c*'s classification for *j*th sample

No longer assume any expert/concept correctly classifies all samples Robust to classification noise

Theorem 1. *For any trial sequence, if the best expert (out of n experts) makes m mistakes, then number of mistakes of Weighted Majority is at most*

$$
\frac{\log n + m \log(1/\beta)}{\log(\frac{2}{1+\beta})}
$$

e.g. $\beta = 1/2$: $2.41(m + \log n)$ e.g. $\beta = 3/4$: $2.2m + 5.2 \log n$ e.g. $\beta = 1 - \varepsilon$: $\approx (2 + \frac{3}{2}\varepsilon)m + \frac{2}{\varepsilon}$ *ε* log *n*

Proof. let $W = q_0 + q_1 =$ total weight of all experts (initially *n*) After each mistake, at least half of *W* shrinks by factor *β*

Total weight reduces to $\leq \frac{W}{2} + \beta \frac{W}{2} = \frac{1+\beta}{2}$ $\frac{N}{2} + \beta \frac{W}{2} = \frac{1+\beta}{2}W$ when Weighted Majority makes *M* mistakes: $W \leqslant \left(\frac{1+\beta}{2}\right)$ $\frac{+\beta}{2})^M n$ when best expert makes *m* mistakes: $w_i = \beta^m$ $w_i \leqslant W$ \implies $m \leqslant (\frac{1+\beta}{2})$ $\frac{+ \beta}{2}$)^{*M*}*n* \Leftrightarrow *m* log $\beta \leqslant M$ log($\frac{1+\beta}{2}$ $\frac{+\beta}{2}$) + log *n* \iff *M* log($\frac{2}{1+}$ $\frac{2}{1+\beta}$) ≤ log *n* + *m* log(1/*β*) □

Note: The bound can be interpreted as

 $\log (W_{\rm init}/W_{\rm final})$ $\frac{W_{\text{init}}/W_{\text{final}}}{\log(1/u)}$ where $u = \frac{1+\beta}{2}$ $\frac{1}{2}$ = shrink in *W* per mistake Randomized Weighted Majority

Fix parameter $0 \leq \beta < 1$ Initialize: $w_1 = \cdots = w_n = 1$ On input *x*, poll opinions from experts Predict according to a random expert *i* chosen with probability proportional to *wⁱ* i.e. probability w_i/W , where $W =$ total weight $= \sum_{1 \leq i \leq n} w_i$ On revealing correct label, penalize incorrect experts Multiply every incorrect expert *i*'s weight w_i by β

Denote $\varepsilon = 1 - \beta$

Theorem 2. *Given any trial sequence with fixed correct labels, if the best expert (out of n experts) makes m mistakes, then*

$$
\mathbb{E}[\#mistakes\ of\ RWM] \leq \frac{\ln n - m\ln(1-\varepsilon)}{\varepsilon}
$$

e.g. $\beta = 1/2$: $1.39m + 2 \ln n$ e.g. $\beta = 3/4$: $1.16m + 4 \ln n$ e.g. $\beta = 1 - \varepsilon$:
Key benefit: $\frac{\varepsilon}{2})m+\frac{1}{\varepsilon}$ *ε* ln *n* \approx *m* mistakes (ignoring additive log *n*), down from \approx 2*m*

Proof. Fix any sequence of *T* trials together with their correct labels Let F_t = fraction of total weight on wrong prediction at trial t Want to bound $E[$ #mistakes of RWM] = \sum *Ft*

1⩽*t*⩽*T* At trial *t*, probability of mistake is F_t , and εF_t fraction of weight is removed

$$
W_{\text{final}} = W_{\text{init}}(1 - \varepsilon F_1) \dots (1 - \varepsilon F_T) \qquad (W_{\text{init}} = n)
$$

$$
\ln W_{\text{final}} = \ln n + \ln(1 - \varepsilon F_1) + \dots + \ln(1 - \varepsilon F_T)
$$

Best expert makes *m* mistakes: $w_i = \beta^m = (1 - \varepsilon)^m$

$$
W_{\text{final}} \geqslant w_i \quad \Longleftrightarrow \quad \ln W_{\text{final}} \geqslant \ln w_i \quad \Longleftrightarrow \quad \ln n + \sum_{1 \leqslant t \leqslant T} \ln(1 - \varepsilon F_t) \geqslant m \ln(1 - \varepsilon)
$$

Claim: $\ln(1-x) \leq -x$ for all $x < 1$ Take $x = \varepsilon F_t$ in Claim, we get $\ln(1 - \varepsilon F_t) \leqslant -\varepsilon F_t$, and

$$
\varepsilon \sum_{1 \leq t \leq T} F_t \leq \sum_{1 \leq t \leq T} -\ln(1 - \varepsilon F_t) \leq \ln n - m \ln(1 - \varepsilon) \qquad \Box
$$

Above Claim is true because for all real *x* $1-x \leqslant e^{-x}$

