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Notes 6: Weighted Majority

1. Online regret bound model

e.g. stock market prediction: guessing whether it will go up or down for each day
A sequence of rounds/trials, each being:

(1) A new unlabeled example x arrives
(2) n experts reveal their opinions about the label for x (label is either 0 or 1)
(3) Algorithm predicts 0 or 1 according to experts’ opinions
(4) Algorithm is told correct label for x

Goal: minimize number of mistakes, compared with the best expert
If every “expert” makes many mistakes, algorithm may, too

2. Weighted Majority
Weighted Majority

Fix parameter 0 ⩽ β < 1
Initialize: w1 = · · · = wn = 1
On input x, poll opinions from experts

Compute total weight q0 of experts predicting 0 and total weight q1 predicting 1
Predict according to weighted majority (predict 0 if q0 > q1; predict 1 otherwise)

On revealing correct label, penalize incorrect experts
Multiply every incorrect expert i’s weight wi by β

If β = 0, Weighted Majority algorithm becomes Halving algorithm

expert ←→ concept
expert i’s opinion in jth trial ←→ concept c’s classification for jth sample

No longer assume any expert/concept correctly classifies all samples
Robust to classification noise

Theorem 1. For any trial sequence, if the best expert (out of n experts) makes m mistakes, then
number of mistakes of Weighted Majority is at most

logn+m log(1/β)
log( 2

1+β )

e.g. β = 1/2: 2.41(m+ logn)
e.g. β = 3/4: 2.2m+ 5.2 logn
e.g. β = 1− ε: ≈ (2 + 3

2ε)m+ 2
ε logn

Proof. let W = q0 + q1 = total weight of all experts (initially n)
After each mistake, at least half of W shrinks by factor β

Total weight reduces to ⩽ W
2 + βW

2 = 1+β
2 W

when Weighted Majority makes M mistakes: W ⩽ (1+β
2 )Mn

when best expert makes m mistakes: wi = βm

wi ⩽ W =⇒ βm ⩽ (1+β
2 )Mn ⇐⇒ m logβ ⩽ M log(1+β

2 ) + logn
⇐⇒ M log( 2

1+β ) ⩽ logn+m log(1/β) □

Note: The bound can be interpreted as
log(Winit/Wfinal)

log(1/u) where u =
1 + β

2
= shrink in W per mistake
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3. Randomized Weighted Majority
Randomized Weighted Majority

Fix parameter 0 ⩽ β < 1
Initialize: w1 = · · · = wn = 1
On input x, poll opinions from experts

Predict according to a random expert i chosen with probability proportional to wi

i.e. probability wi/W , where W = total weight =
∑

1⩽i⩽nwi

On revealing correct label, penalize incorrect experts
Multiply every incorrect expert i’s weight wi by β

Denote ε = 1− β

Theorem 2. Given any trial sequence with fixed correct labels, if the best expert (out of n experts)
makes m mistakes, then

E[#mistakes of RWM] ⩽ lnn−m ln(1− ε)

ε

e.g. β = 1/2: 1.39m+ 2 lnn
e.g. β = 3/4: 1.16m+ 4 lnn
e.g. β = 1− ε: ≈ (1 + ε

2)m+ 1
ε lnn

Key benefit: ≈ m mistakes (ignoring additive logn), down from ≈ 2m

Proof. Fix any sequence of T trials together with their correct labels
Let Ft = fraction of total weight on wrong prediction at trial t
Want to bound E[#mistakes of RWM] =

∑
1⩽t⩽T

Ft

At trial t, probability of mistake is Ft, and εFt fraction of weight is removed
Wfinal = Winit(1− εF1) . . . (1− εFT ) (Winit = n)

lnWfinal = lnn+ ln(1− εF1) + · · ·+ ln(1− εFT )

Best expert makes m mistakes: wi = βm = (1− ε)m

Wfinal ⩾ wi ⇐⇒ lnWfinal ⩾ lnwi ⇐⇒ lnn+
∑

1⩽t⩽T

ln(1− εFt) ⩾ m ln(1− ε)

Claim: ln(1− x) ⩽ −x for all x < 1
Take x = εFt in Claim, we get ln(1− εFt) ⩽ −εFt, and

ε
∑

1⩽t⩽T

Ft ⩽
∑

1⩽t⩽T

− ln(1− εFt) ⩽ lnn−m ln(1− ε) □

Above Claim is true because for all real x 1− x ⩽ e−x

e−x

1− x
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