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Notes 6: Weighted Majority

1. ONLINE REGRET BOUND MODEL

e.g. stock market prediction: guessing whether it will go up or down for each day
A sequence of rounds/trials, each being:

(1) A new unlabeled example x arrives

(2) n experts reveal their opinions about the label for x (label is either 0 or 1)
(3) Algorithm predicts 0 or 1 according to experts’ opinions

(4) Algorithm is told correct label for x

Goal: minimize number of mistakes, compared with the best expert
If every “expert” makes many mistakes, algorithm may, too

2. WEIGHTED MAJORITY
~Weighted Majority.
Fix parameter 0 < 8 < 1
Initialize: wy=--=w, =1
On input x, poll opinions from experts
Compute total weight o of experts predicting 0 and total weight ¢ predicting 1
Predict according to weighted majority (predict 0 if go > q1; predict 1 otherwise)
On revealing correct label, penalize incorrect experts
Multiply every incorrect expert i’s weight w; by 3

If B = 0, Weighted Majority algorithm becomes Halving algorithm

expert — concept

expert ¢’s opinion in jth trial — concept ¢’s classification for jth sample

No longer assume any expert/concept correctly classifies all samples
Robust to classification noise

Theorem 1. For any trial sequence, if the best expert (out of n experts) makes m mistakes, then
number of mistakes of Weighted Majority is at most

logn + mlog(1/5)
log(123)
eg. B=1/2: 2.41(m + logn)
e.g. B =3/4: 2.2m + 5.2logn
eg. f=1—e: ~ (24 3e)m + 2logn

Proof. let W = qg + q1 = total weight of all experts (initially n)
After each mistake, at least half of W shrinks by factor
Total weight reduces to < % + B% = #W

when Weighted Majority makes M mistakes: W < (%)M n
when best expert makes m mistakes: w; = g™
w; <KW == M < (#)Mn = mlogﬁngog(#)leogn
= Mlog(ﬁ) < logn + mlog(1/p3) O

Note: The bound can be interpreted as

1Og(VVinit /Wﬁnal)
log(1/u)

1
where u = TB = shrink in W per mistake

1



3. RANDOMIZED WEIGHTED MAJORITY
~Randomized Weighted Majority.

Fix parameter 0 < 8 < 1

Initialize: wy=--=w, =1

On input z, poll opinions from experts
Predict according to a random expert ¢ chosen with probability proportional to w;
i.e. probability w;/W, where W = total weight =, ;. w;

On revealing correct label, penalize incorrect experts
Multiply every incorrect expert i’s weight w; by £

Denotee =1—-p

Theorem 2. Given any trial sequence with fixed correct labels, if the best expert (out of n experts)

makes m mistakes, then
n—mln(l —e)

1
E[#mistakes of RWM] < -

£
eg f=1/2: 1.39m +2Inn

eg. B =3/4 1.16m+4Inn

eg.f=1—¢: %(1+%)m+%lnn

Key benefit: ~ m mistakes (ignoring additive logn), down from ~ 2m

Proof. Fix any sequence of T trials together with their correct labels
Let F; = fraction of total weight on wrong prediction at trial ¢
Want to bound E[#mistakes of RWM] = Z Fy

1<t<T
At trial t, probability of mistake is F;, and eF; fraction of weight is removed

Wﬁnal = I/Vinit(l - €F1) e (1 - EFT) (I/Vinit = n)
InWhpay =Inn+In(l —eFy)+---+1In(l —eFyp)

Best expert makes m mistakes: wp=p"=1-eg)"

Winal = w; <— InWgpag =2 Inw; <= Inn+ Z In(1—¢€Fy) > mlin(l —¢)

1<t<T
Claim: In(l—z)< —zforallz <1
Take x = ¢F} in Claim, we get In(1 — ¢F}) < —eF}, and
€ Z F; < Z —In(1—eFy) <lnn—mln(l —¢) |
1<t<T 1<t<T
Above Claim is true because for all real x l—ax<e ™
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