CSCI4230 Computational Learning Theory

Lecturer: Siu On Chan

Spring 2021 Based on Rocco Servedio's notes

## Notes 5: VC dimension

## 1. VAPNIK-CHERVONENKIS DIMENSION

Related to mistake lower bounds in Online Learning

Usually an integer, telling us how expressive a concept class  ${\mathcal C}$  is

Given concept class C over instance space X, subset  $S \subseteq X$  is **shattered by** C if all "dichotomies" of S can be induced by C, i.e.:

$$\forall T \subseteq S, \exists c \in \mathcal{C} \text{ s.t. } c \cap S = T$$



 $\operatorname{VCDim}(\mathcal{C})$  is the size of the largest subset  $S \subseteq X$  shattered by  $\mathcal{C}$  $\operatorname{VCDim}(\mathcal{C}) = d$  if and only if

(1) some subset  $S \subseteq X$  with |S| = d is shattened by C; and

(2) all subsets of size d + 1 is not shattered by C

 $\operatorname{VCDim}(\mathcal{C})$  can be  $\infty$ 

Example: Closed intervals of the real line  $X = \mathbb{R}$   $\mathcal{C} = \text{closed intervals} = \{[a,b] \mid a, b \in \mathbb{R}\}$  where  $[a,b] = \{x \in \mathbb{R} \mid a \leq x \text{ and } x \leq b\}$ Every two points (e.g. 3 and 8) can be shattered  $\implies$  VCDim $(\mathcal{C}) \ge 2$ 

$$\xrightarrow{\left(\begin{array}{c} + & + \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} + & - \\ 3 & 3 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} + & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 8 \end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\end{array}\right)} \xrightarrow{\left(\begin{array}{c} - & - & - \\ 3 & 1 \\\end{array}\right)} \xrightarrow{\left(\begin{array}{c} -$$

No three points (a < b < c) can be shattered  $\implies$  VC: + - +

Example: Halfspaces in the plane $X = \mathbb{R}^2$  $\mathcal{C} = \text{LTF}$ Any three non-collinear points can be shattered $\implies$  $\text{VCDim}(\mathcal{C}) \ge 3$ •••

S = has all dichotomies such as

•- •+ VCDim
$$(\mathcal{C}) \leq 3$$





No four points can be shattered == Case 1: contains three collinear points



Case 2: No three points collinear

Case 2a: Some point inside the triangle formed by three other points



Case 2b: Four points form a convex quadrilateral

the two diagonals cross



endpoints of two diagonals get different labels

Example:  $X = \{0,1\}^n$   $\mathcal{C} = \{\text{monotone conjunction}\}$  e.g.  $c(x) = x_2 \land x_5 \land x_7 \in \mathcal{C}$ VCDim $(\mathcal{C}) \ge n$ :  $S = \{a_j = \text{vector with } 0 \text{ at position } j \text{ and } 1 \text{ everywhere else } | 1 \le j \le n\}$ e.g. n = 4  $S = \begin{cases} 0111, \\ 1011, \\ 1101, \\ 1110 \end{cases}$ ,  $T = \begin{cases} 0111, \\ 1101, \\ 1110 \end{cases}$  induced by  $c(x) = x_2$ Every subset  $T \subseteq S$  is induced by  $c \in \mathcal{C}$  containing precisely variables  $x_j$  s.t.  $a_j \notin T$ VCDim $(\mathcal{C}) \le n$ : because  $|\mathcal{C}| = 2^n$  and Observation: VCDim $(\mathcal{C}) \ge d$  implies  $|\mathcal{C}| \ge 2^d$ 

## 2. Online Mistake Lowerbounds from VC dimension

**Claim 1.** Any deterministic algorithm for learning C makes  $\geq$  VCDim(C) mistakes on some sample sequence

Proof.  $S = \{x^1, \dots, x^d\}$  be shattered set of size  $d = \text{VCDim}(\mathcal{C})$ Instance sequence is  $x^1, \dots, x^d$ On sample  $x^i$ , algorithm predicts  $b_i \in \{0, 1\}$ Can find  $c \in \mathcal{C}$  s.t.  $c(x^i) = \overline{b}_i$  for all  $1 \leq i \leq n$  (opposite of all predictions)

**Claim 2.** Some fixed sample sequence causes every randomized algorithm for learning C to make  $\geq \text{VCDim}(C)/2$  mistakes in expectation

Previous claim follows from the next claim (via Yao's minimax principle, not covered in this course)

**Claim 3.** Some distribution of random sample sequences causes every deterministic algorithm for learning C to make  $\geq \text{VCDim}(C)/2$  mistakes in expectation

Proof.  $S = \{x^1, \ldots, x^d\}$  be shattered set of size  $d = \text{VCDim}(\mathcal{C})$ Sample sequence is  $(x^1, y^1), \ldots, (x^d, y^d)$ , where  $y^1, \ldots, y^d$  are uniformly random bits Any algorithm predicting d uniformly random bits makes d/2 mistakes in expectation For every choice of random bits  $y^1, \ldots, y^d$ , some  $c \in \mathcal{C}$  correctly labels all instances  $x^1, \ldots, x^d$