CSCI4230 Computational Learning Theory Spring 2021

Lecturer: Siu On Chan Based on Rocco Servedio's notes

Notes 5: VC dimension

1. Vapnik–Chervonenkis dimension

Related to mistake lower bounds in Online Learning

Usually an integer, telling us how expressive a concept class $\mathcal C$ is

Given concept class C over instance space X , subset $S \subseteq X$ is **shattered by** C if all "dichotomies" of *S* can be induced by *C*, i.e.:

$$
\forall T \subseteq S, \exists c \in \mathcal{C} \text{ s.t. } c \cap S = T
$$

VCDim(\mathcal{C}) is the size of the largest subset $S \subseteq X$ shattered by \mathcal{C} $VCDim(\mathcal{C}) = d$ if and only if

(1) some subset $S \subseteq X$ with $|S| = d$ is shattered by C ; and

(2) all subsets of size $d+1$ is not shattered by $\mathcal C$

VCDim(\mathcal{C}) can be ∞

Example: Closed intervals of the real line $X = \mathbb{R}$ *C* = closed intervals = { $[a, b] | a, b \in \mathbb{R}$ } where $[a, b] = \{x \in \mathbb{R} | a \leq x \text{ and } x \leq b\}$ Every two points (e.g. 3 and 8) can be shattered \implies VCDim(*C*) ≥ 2

3 + 8 + 3 + 8 *−* 3 *−* 8 + 3 *−* 8 *−* No three points (*a < b < c*) can be shattered =*⇒* VCDim(*C*) ⩽ 2 + *b − c* +

Example: Halfspaces in the plane
$$
X = \mathbb{R}^2
$$
 $C = LTF$
Any three non-collinear points can be shattered \implies VCDim $(C) \ge 3$

a

 $S =$ has all dichotomies such as

$$
\begin{array}{c}\n \cdot - \\
\searrow \\
\searrow \\
\searrow \\
\text{VCDim}(\mathcal{C}) \leqslant 3\n \end{array}
$$

+

No four points can be shattered \implies Case 1: contains three collinear points

Case 2: No three points collinear

Case 2a: Some point inside the triangle formed by three other points

Case 2b: Four points form a convex quadrilateral *⇐⇒* the two diagonals cross

and

endpoints of two diagonals get different labels

Example: $X = \{0, 1\}^n$ $\mathcal{C} = \{$ monotone conjunction $\}$ e.g. $c(x) = x_2 \land x_5 \land x_7 \in \mathcal{C}$ VCDim(*C*) $\geq n$: $S = \{a_j = \text{vector with 0 at position } j \text{ and 1 everywhere else } | 1 \leq j \leq n\}$ e.g. $n = 4$ $\sqrt{ }$ $\Big\}$ $\overline{\mathcal{L}}$ 0111*,* 1011*,* 1101*,* 1110 λ $\overline{\mathcal{L}}$ \int $T =$ $\sqrt{ }$ $\Big\}$ $\overline{\mathcal{L}}$ 0111*,* 1101*,* 1110 λ $\overline{\mathcal{L}}$ \int induced by $c(x) = x_2$ Every subset $T \subseteq S$ is induced by $c \in \mathcal{C}$ containing precisely variables x_j s.t. $a_j \notin T$ $VCDim(\mathcal{C}) \leq n$: because $|\mathcal{C}| = 2^n$ and **Observation:** $VCDim(\mathcal{C}) \ge d$ implies $|\mathcal{C}| \ge 2^d$

2. Online Mistake Lowerbounds from VC dimension

Claim 1. *Any deterministic algorithm for learning* C *makes* \geq VCDim(C) *mistakes on some sample sequence*

Proof. $S = \{x^1, \ldots, x^d\}$ be shattered set of size $d = \text{VCDim}(\mathcal{C})$ Instance sequence is x^1, \ldots, x^d On sample x^i , algorithm predicts $b_i \in \{0, 1\}$ Can find $c \in \mathcal{C}$ s.t. $c(x^i)$ \Box \Box

Claim 2. *Some fixed sample sequence causes every randomized algorithm for learning C to make* \geqslant VCDim(C)/2 *mistakes in expectation*

Previous claim follows from the next claim (via Yao's minimax principle, not covered in this course)

Claim 3. *Some distribution of random sample sequences causes every deterministic algorithm for learning* C *to make* \geq VCDim(C)/2 *mistakes in expectation*

Proof. $S = \{x^1, \ldots, x^d\}$ be shattered set of size $d = \text{VCDim}(\mathcal{C})$ Sample sequence is $(x^1, y^1), \ldots, (x^d, y^d)$, where y^1, \ldots, y^d are uniformly random bits Any algorithm predicting *d* uniformly random bits makes *d*/2 mistakes in expectation For every choice of random bits y^1, \ldots, y^d , some $c \in \mathcal{C}$ correctly labels all instances x^1, \ldots, x^d