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Notes 5: VC dimension

1. Vapnik–Chervonenkis dimension

Related to mistake lower bounds in Online Learning
Usually an integer, telling us how expressive a concept class C is
Given concept class C over instance space X, subset S ⊆ X is shattered by C if all “dichotomies” of
S can be induced by C, i.e.:

∀T ⊆ S, ∃c ∈ C s.t. c ∩ S = T

X = the plane = R2 C = axis-aligned rectangles

S = has all dichotomies such as
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VCDim(C) is the size of the largest subset S ⊆ X shattered by C
VCDim(C) = d if and only if

(1) some subset S ⊆ X with |S| = d is shattered by C; and
(2) all subsets of size d+ 1 is not shattered by C

VCDim(C) can be ∞

Example: Closed intervals of the real line
X = R C = closed intervals = {[a, b] | a, b ∈ R} where [a, b] = {x ∈ R | a ⩽ x and x ⩽ b}
Every two points (e.g. 3 and 8) can be shattered =⇒ VCDim(C) ⩾ 2
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No three points (a < b < c) can be shattered =⇒ VCDim(C) ⩽ 2

a

+

b

−
c

+

Example: Halfspaces in the plane X = R2 C = LTF
Any three non-collinear points can be shattered =⇒ VCDim(C) ⩾ 3

S = has all dichotomies such as
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No four points can be shattered =⇒ VCDim(C) ⩽ 3
Case 1: contains three collinear points
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Case 2: No three points collinear
Case 2a: Some point inside the triangle formed by three other points
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Case 2b: Four points form a convex quadrilateral ⇐⇒ the two diagonals cross
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endpoints of two diagonals get different labels

Example: X = {0, 1}n C = {monotone conjunction} e.g. c(x) = x2 ∧ x5 ∧ x7 ∈ C
VCDim(C) ⩾ n: S = {aj = vector with 0 at position j and 1 everywhere else | 1 ⩽ j ⩽ n}

e.g. n = 4 S =


0111,
1011,
1101,
1110

 , T =


0111,

1101,
1110

 induced by c(x) = x2

Every subset T ⊆ S is induced by c ∈ C containing precisely variables xj s.t. aj ̸∈ T
VCDim(C) ⩽ n: because |C| = 2n and

Observation: VCDim(C) ⩾ d implies |C| ⩾ 2d

2. Online Mistake Lowerbounds from VC dimension

Claim 1. Any deterministic algorithm for learning C makes ⩾ VCDim(C) mistakes on some sample
sequence

Proof. S = {x1, . . . , xd} be shattered set of size d = VCDim(C)
Instance sequence is x1, . . . , xd

On sample xi, algorithm predicts bi ∈ {0, 1}
Can find c ∈ C s.t. c(xi) = bi for all 1 ⩽ i ⩽ n (opposite of all predictions) □

Claim 2. Some fixed sample sequence causes every randomized algorithm for learning C to make
⩾ VCDim(C)/2 mistakes in expectation

Previous claim follows from the next claim (via Yao’s minimax principle, not covered in this course)

Claim 3. Some distribution of random sample sequences causes every deterministic algorithm for
learning C to make ⩾ VCDim(C)/2 mistakes in expectation

Proof. S = {x1, . . . , xd} be shattered set of size d = VCDim(C)
Sample sequence is (x1, y1), . . . , (xd, yd), where y1, . . . , yd are uniformly random bits
Any algorithm predicting d uniformly random bits makes d/2 mistakes in expectation
For every choice of random bits y1, . . . , yd, some c ∈ C correctly labels all instances x1, . . . , xd □
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