
CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 4: Perceptron and Halving algorithms

1. Perceptron algorithm

Update weights additively
Learn well-separated (i.e. large margin) LTF with possibly negative weights
Let c(x) = 1(v · x ⩾ θ) be the unknown LTF
Normalization: threshold θ = 0 (halfspace through the origin)
Reason: Add extra coordinate xn+1 = 1 to every instance

v · (x1, . . . , xn) ⩾ θ ⇐⇒ (v,−θ) · (x1, . . . , xn+1) ⩾ 0

Normalization: Every sample x has unit length, i.e. ∥x∥ = 1 (recall ∥x∥ =
√

x21 + · · ·+ x2n)
Reason: By previous assumption θ = 0; rescaling x doesn’t change the sign of v · x
Normalization: weight vector v has unit length

Perceptron
Initialize: w = 0
On input x, output hypothesis h(x) = 1(w · x ⩾ 0) and get c(x)
False positive (h(x) = 1, c(x) = 0): Update w as w − x
False negative (h(x) = 0, c(x) = 1): Update w as w + x

On false positive, w · x is too big, so subtract x from w, so that (w − x) · x = w · x− ∥x∥2 = w · x− 1
On false negative, w · x is too small, so add x to w, so that (w + x) · x = w · x+ ∥x∥2 = w · x+ 1

Theorem 1. (Perceptron convergence) Let c(x) = 1(v ·x ⩾ 0) be centered LTF with ∥v∥ = 1. Suppose
all samples x have unit length, let margin δ be min |v · x| over all samples x received by the algorithm.
Then Perceptron Algorithm learns c with at most 1/δ2 mistakes

Claim 2. After M mistakes, w · v ⩾ δM

Proof. True when M = 0 since w = 0
Will show that every mistake increases w · v by ⩾ δ
On false positive, w · v becomes (w − x) · v = w · v − x · v ⩾ w · v + δ
On false negative, w · v becomes (w + w) · v = w · v + x · v ⩾ w · v + δ □

Claim 3. After M mistakes, ∥w∥2 ⩽ M

Proof. True when M = 0 since w = 0
Will show that every mistake increases ∥w∥2 by ⩽ 1
On false positive, ∥w∥2 becomes ∥w − x∥2 = (w − x) · (w − x) = ∥w∥2 − 2w · x︸︷︷︸

⩾0

+ ∥x∥2︸︷︷︸
=1

On false negative, ∥w∥2 becomes ∥w + x∥2 = (w + x) · (w + x) = ∥w∥2 + 2w · x︸︷︷︸
<0

+ ∥x∥2︸︷︷︸
=1

□

Proof of Perceptron Convergence. δM ⩽ w · v ⩽︸︷︷︸
Cauchy–Schwarz

∥w∥
=1︷︸︸︷
∥v∥ ⩽

√
M □

The above bound is tight!

Claim 4. When X = {x ∈ Rd | ∥x∥ = 1} and d ⩾ ⌊1/δ2⌋, any deterministic algorithm for learning
LTF makes ⌊1/δ2⌋ mistakes on certain sample sequences and LTF with margin δ

Proof. ith xi sample is ith standard basis vector ei (i.e. 1 at position i and 0 elsewhere)
Number of samples is n

def
= ⌊1/δ2⌋ (as most d by assumption)

All samples will be labeled as the opposite of algorithm’s prediction
1

2

Will find v ∈ Rd with ∥v∥ ⩽ 1 that “correctly” classifies all ei with margin δ, i.e.
∀ “correct label sequence” y ∈ {1,−1}n, yiδ = v · ei

This forces vi = δyi for all i ⩽ n (e.g. v = {+δ,−δ,−δ,+δ})
Indeed ∥v∥2 = δ2∥y∥2 = δ2n ⩽ 1 □

2. Dual perceptron

In Perceptron Algorithm w always ±1-sum of samples, i.e. ∃ signs σ1, . . . , σℓ ∈ {1,−1} s.t.
w = σ1x

i1 + · · ·+ σℓx
iℓ

Initially w = 0; Every mistake adds a new term σjx
ij to w

Memorizing all mistakes, on sample x,

w · x =
∑

1⩽j⩽ℓ

σj(x
ij · x)

Computable given inner products xij · x between samples
Now takes #mistakes time to compute w (slower)
Can replace inner product · with any kernel function K(,)

3. Halving algorithm

Given any finite concept class C
Halving Algorithm
K always contains all c ∈ C consistent with all the labeled samples so far (initially K = C)
Hypothesis h is the majority vote over concepts in K

Every mistake removes at least half of concepts from K
Claim: Halving Algorithm makes ⩽ log |C| mistakes
Slow: |K| per round
Hypothesis isn’t from C, but the majority over a subset of C

4. Randomized halving algorithm
Randomized Halving Algorithm
K always contains all c ∈ C consistent with all the labeled samples so far (initially K = C)
Randomly choose a concept c ∈ K to be the hypothesis h

Claim 5. On any sequence of samples x1, . . . , xm labeled by any c ∈ C,
E[#mistakes of the algorithm] ⩽ ln |C|+O(1)

Proof. Fix c ∈ C and x1, . . . , xm

Suppose at some point |K| = r
We will bound E[#future mistakes] ⩽ Mr for some upper bound Mr defined below

Order concepts c1, . . . , cr in K according to when they are eliminated by the sequence
e.g. first eliminated batch c1, . . . , c3, next c4, c5 etc, finally cr = c never eliminated
On first sample x1, Algorithm randomly chooses one of c1, . . . , cr
If cr is chosen, no mistake (1/r chance)
If chosen ct makes mistake on x1 (1/r chance for each t < r)

c1, . . . , ct (and possibly more) must be eliminated
K shrinks to (at most) size r − t, expect Mr−t more mistakes

Mr ⩽
∑

1⩽t<r

1

r
(1 +Mr−t) =⇒ rMr ⩽

∑
1⩽t<r

(1 +Mr−t) = r − 1 +M1 + · · ·+Mr−1

3

Similarly for r − 1: (r − 1)Mr−1 = (r − 2) +M1 + · · ·+Mr−2 (∗)
Subtracting, r(Mr −Mr−1) ⩽ 1

Mr ⩽
1

r
+Mr−1 ⩽

1

r
+

1

r − 1
+Mr−2 ⩽ . . . ⩽ 1

r
+

1

r − 1
+ · · ·+ 1

1︸ ︷︷ ︸
Harmonic number

= ln r +O(1)

In the above, we defined Mr by (∗) □
Constant factor improvement over deterministic halving: log |C|/ ln |C| = log e = 1.44 . . .

	1. Perceptron algorithm
	2. Dual perceptron
	3. Halving algorithm
	4. Randomized halving algorithm

