CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 4: Perceptron and Halving algorithms

1. PERCEPTRON ALGORITHM

Update weights additively

Learn well-separated (i.e. large margin) LTF with possibly negative weights
Let ¢(x) = 1(v - = > 0) be the unknown LTF

Normalization: threshold § =0 (halfspace through the origin)
Reason: Add extra coordinate z,41 = 1 to every instance

ve (T, ..., mn) =0 = (v,=0) - (x1,...,Xpy1) =0

Normalization: Every sample z has unit length, i.e. ||| =1 (recall ||z|| = /a3 + -+ 22)
Reason: By previous assumption 6 = 0; rescaling x doesn’t change the sign of v -
Normalization: weight vector v has unit length

Perceptron

Initialize: w=0

On input z, output hypothesis h(x) = L(w -z > 0) and get ¢(x)
False positive (h(z) = 1,¢(z) = 0): Update w as w — x
False negative (h(z) =0, c(x) = 1): Update w as w + x

On false positive, w - z is too big, so subtract x from w, so that (w —z) -z =w-z —||z]|? =w -2 — 1
On false negative, w - x is too small, so add z to w, so that (w+2) -z =w -z + [[z]? =w -z +1

Theorem 1. (Perceptron convergence) Let ¢(z) = 1(v-x > 0) be centered LTF with ||v|| = 1. Suppose
all samples x have unit length, let margin 6 be min |v - z| over all samples x received by the algorithm.
Then Perceptron Algorithm learns ¢ with at most 1/6% mistakes

Claim 2. After M mistakes, w-v > dM

Proof. True when M = 0 since w =0

Will show that every mistake increases w - v by > §

On false positive, w - v becomes (w —x) - v=w-v—z-v=Zw-v+0J

On false negative, w - v becomes (w+w) - v=w-v+z-v=>w-v+J O

Claim 3. After M mistakes, ||w|? < M

Proof. True when M = 0 since w = 0
Will show that every mistake increases ||w||? by < 1

On false positive, ||w||? becomes ||w — z||?> = (w —) - (w — z) = ||w||? — 2w - z+ |||

>0 ~
On false negative, ||wl||? becomes ||w + z||? = (w + z) - (w + x) = ||w|]? + 2w - z + ||z O

<0 1

=1
PN
Proof of Perceptron Convergence. M <w-v < ||lw|| |v|| < VM O
—

Cauchy—Schwarz

The above bound is tight!
Claim 4. When X = {x € R? | ||z|| = 1} and d > |1/62%], any deterministic algorithm for learning

LTF makes |1/6] mistakes on certain sample sequences and LTF with margin §
Proof. ith x' sample is ith standard basis vector e; (i.e. 1 at position 7 and 0 elsewhere)

Number of samples is n of |1/62] (as most d by assumption)
All samples will be labeled as the opposite of algorithm’s prediction
1

2

Will find v € R? with ||v]| < 1 that “correctly” classifies all e; with margin 4, i.e.
V “correct label sequence” y € {1, —1}", yid =v-e;

This forces v; = dy; for all i < n (e.g. v ={+6,—0,—0,4+0})
Indeed |[v||? = 8?||y||> = 6%n < 1

2. DUAL PERCEPTRON
In Perceptron Algorithm w always +1-sum of samples, i.e. 3 signs o1,...,0, € {1, —1} s.t.
w= o1z + -+ oz’
Initially w = 0; Every mistake adds a new term o;z% to w
Memorizing all mistakes, on sample =z,
w-ex = Z oj(z' - 2)
1<j<t

Computable given inner products z% - x between samples
Now takes #mistakes time to compute w (slower)
Can replace inner product - with any kernel function K(,)

3. HALVING ALGORITHM

Given any finite concept class C

Halving Algorithm

K always contains all ¢ € C consistent with all the labeled samples so far (initially K = C)
Hypothesis h is the majority vote over concepts in K

Every mistake removes at least half of concepts from K
Claim: Halving Algorithm makes < log |C| mistakes

Slow: |K| per round

Hypothesis isn’t from C, but the majority over a subset of C

4. RANDOMIZED HALVING ALGORITHM
Randomized Halving Algorithm

K always contains all ¢ € C consistent with all the labeled samples so far (initially K = C)
Randomly choose a concept ¢ € K to be the hypothesis h

Claim 5. On any sequence of samples x',...,x™ labeled by any c € C,
E[#mistakes of the algorithm] < In |C| + O(1)
Proof. Fix c€ C and z',..., 2™

Suppose at some point |K| =r
We will bound E[#future mistakes] < M, for some upper bound M, defined below

Order concepts cy, ..., ¢ in K according to when they are eliminated by the sequence
e.g. first eliminated batch c1, ..., c3, next ¢4, c5 ete, finally ¢, = ¢ never eliminated
On first sample ', Algorithm randomly chooses one of ¢y, ..., ¢,
If ¢, is chosen, no mistake (1/r chance)
If chosen ¢; makes mistake on x! (1/r chance for each t <)
¢1,-..,¢ (and possibly more) must be eliminated
K shrinks to (at most) size r — ¢, expect M,_; more mistakes

1
M, <Y =(14+My) = rMy< > (A4+Moy)=r—1+M+-+M_4

r
1<t<r 1<t<r

Similarly for » — 1: (r—UD)M,_1=(r—=2)+M +---+ M9 (%)
Subtracting, r(M, — M,_;) <1
1 1 1 1 1 1
MT<7+MT71<7+4 +Mr—2<---<*+ +"'+*:ln7“+0(1)
r r o r—1 r o r—1 1

Harmonic number

In the above, we defined M, by (x) O

Constant factor improvement over deterministic halving: log |C]/In |C| =loge =1.44...

	1. Perceptron algorithm
	2. Dual perceptron
	3. Halving algorithm
	4. Randomized halving algorithm

