CSCI4230 Computational Learning Theory Spring 2021 *Lecturer: Siu On Chan Based on Rocco Servedio's notes*

Notes 4: Perceptron and Halving algorithms

1. Perceptron algorithm

Update weights **additively** Learn well-separated (i.e. large margin) LTF with possibly negative weights Let $c(x) = \mathbb{1}(v \cdot x \geq \theta)$ be the unknown LTF **Normalization:** threshold $\theta = 0$ (halfspace through the origin) Reason: Add extra coordinate $x_{n+1} = 1$ to every instance

 $v \cdot (x_1, \ldots, x_n) \geq \theta$ \iff $(v, -\theta) \cdot (x_1, \ldots, x_{n+1}) \geq 0$

Normalization: Every sample *x* has unit length, i.e. $||x|| = 1$ $\sqrt{x_1^2 + \cdots + x_n^2}$ Reason: By previous assumption $\theta = 0$; rescaling *x* doesn't change the sign of $v \cdot x$ **Normalization:** weight vector *v* has unit length

Perceptron

Initialize: $w = 0$ On input *x*, output hypothesis $h(x) = \mathbb{1}(w \cdot x \geq 0)$ and get $c(x)$ False positive $(h(x) = 1, c(x) = 0)$: Update *w* as $w - x$ False negative $(h(x) = 0, c(x) = 1)$: Update *w* as $w + x$

On false positive, $w \cdot x$ is too big, so subtract x from w, so that $(w - x) \cdot x = w \cdot x - ||x||^2 = w \cdot x - 1$ On false negative, $w \cdot x$ is too small, so add x to w, so that $(w + x) \cdot x = w \cdot x + ||x||^2 = w \cdot x + 1$

Theorem 1. *(Perceptron convergence)* Let $c(x) = \mathbb{1}(v \cdot x \geq 0)$ be centered LTF with $||v|| = 1$ *. Suppose all samples x have unit length, let margin* δ *be* min $|v \cdot x|$ *over all samples x received by the algorithm. Then Perceptron Algorithm learns c* with at most $1/\delta^2$ mistakes

Claim 2. *After M mistakes,* $w \cdot v \geq \delta M$

Proof. True when $M = 0$ since $w = 0$ Will show that every mistake increases $w \cdot v$ by $\geq \delta$ On false positive, $w \cdot v$ becomes $(w - x) \cdot v = w \cdot v - x \cdot v \geq w \cdot v + \delta$ On false negative, $w \cdot v$ becomes $(w + w) \cdot v = w \cdot v + x \cdot v \geq w \cdot v + \delta$

Claim 3. *After M mistakes*, $||w||^2 \le M$

Proof. True when $M = 0$ since $w = 0$ Will show that every mistake increases $||w||^2$ by ≤ 1 On false positive, $||w||^2$ becomes $||w - x||^2 = (w - x) \cdot (w - x) = ||w||^2 - 2 \underbrace{w \cdot x}_{\geq 0}$ $+$ $||x||^2$ $\sum_{i=1}^{\infty}$

=1 On false negative, $||w||^2$ becomes $||w + x||^2 = (w + x) \cdot (w + x) = ||w||^2 + 2 \underbrace{w \cdot x}_{\leq 0}$ $+$ $||x||^2$ $\sum_{=1}$ □

> Cauchy–Schwarz *∥w∥* $=1$ z}|{ *∥v∥* ⩽ *√* M

The above bound is tight!

Proof of Perceptron Convergence.

Claim 4. When $X = \{x \in \mathbb{R}^d \mid ||x|| = 1\}$ and $d \ge |1/\delta^2|$, any deterministic algorithm for learning LTF makes $\lfloor 1/\delta^2 \rfloor$ mistakes on certain sample sequences and LTF with margin δ

*Proof. i*th x^i sample is *i*th standard basis vector e_i (i.e. 1 at position *i* and 0 elsewhere) Number of samples is $n \stackrel{\text{def}}{=} \lfloor 1/\delta^2 \rfloor$ *⌋* (as most *d* by assumption) All samples will be labeled as the opposite of algorithm's prediction

Will find $v \in \mathbb{R}^d$ with $||v|| \leq 1$ that "correctly" classifies all e_i with margin δ , i.e.

∀ "correct label sequence" *y ∈ {*1*, −*1*} n*

This forces $v_i = \delta y_i$ for all $i \leq n$ (e.g. $v = \{+\delta, -\delta, -\delta, +\delta\}$) Indeed $||v||^2 = \delta^2 ||y||^2 = \delta$ $2n \leqslant 1$

2. Dual perceptron

 $y_i \delta = v \cdot e_i$

In Perceptron Algorithm *w* always ± 1 -sum of samples, i.e. \exists signs $\sigma_1, \ldots, \sigma_\ell \in \{1, -1\}$ s.t.

$$
w = \sigma_1 x^{i_1} + \dots + \sigma_\ell x^{i_\ell}
$$

Initially $w = 0$; Every mistake adds a new term $\sigma_j x^{i_j}$ to *w*

Memorizing all mistakes, on sample *x*,

$$
w\cdot x=\sum_{1\leqslant j\leqslant \ell}\sigma_j(x^{i_j}\cdot x)
$$

Computable given inner products $x^{i_j} \cdot x$ between samples Now takes #mistakes time to compute *w* (slower) Can replace inner product \cdot with any **kernel function** $K($,

3. Halving algorithm

Given any finite concept class *C*

Halving Algorithm

K always contains all $c \in \mathcal{C}$ consistent with all the labeled samples so far (initially $K = \mathcal{C}$) Hypothesis *h* is the majority vote over concepts in *K*

Every mistake removes at least half of concepts from *K* **Claim:** Halving Algorithm makes $\leq \log |\mathcal{C}|$ mistakes Slow: *|K|* **per round** Hypothesis isn't from \mathcal{C} , but the majority over a subset of \mathcal{C}

4. Randomized halving algorithm

Randomized Halving Algorithm

1

K always contains all $c \in C$ consistent with all the labeled samples so far (initially $K = C$) Randomly choose a concept $c \in K$ to be the hypothesis *h*

Claim 5. On any sequence of samples x^1, \ldots, x^m labeled by any $c \in \mathcal{C}$,

 $\mathbb{E}[\text{#mistakes of the algorithm}] \leq \ln |\mathcal{C}| + O(1)$

Proof. Fix $c \in \mathcal{C}$ and x^1, \ldots, x^m Suppose at some point $|K| = r$ We will bound $\mathbb{E}[\#$ future mistakes $\leqslant M_r$ for some upper bound M_r defined below

Order concepts c_1, \ldots, c_r in K according to when they are eliminated by the sequence e.g. first eliminated batch c_1, \ldots, c_3 , next c_4, c_5 etc, finally $c_r = c$ never eliminated On first sample x^1 , Algorithm randomly chooses one of c_1, \ldots, c_r If c_r is chosen, no mistake $(1/r \text{ chance})$ If chosen c_t makes mistake on x^1 $(1/r \text{ chance for each } t < r)$

 c_1, \ldots, c_t (and possibly more) must be eliminated

K shrinks to (at most) size $r - t$, expect M_{r-t} more mistakes

$$
M_r \leqslant \sum_{1 \leqslant t < r} \frac{1}{r} (1 + M_{r-t}) \qquad \Longrightarrow \qquad rM_r \leqslant \sum_{1 \leqslant t < r} (1 + M_{r-t}) = r - 1 + M_1 + \dots + M_{r-1}
$$

3

Similarly for $r - 1$: $(r - 1)M_{r-1} = (r - 2) + M_1 + \cdots + M_{r-2}$ (*) Subtracting, $r(M_r - M_{r-1}) \leq 1$

$$
M_r \leq \frac{1}{r} + M_{r-1} \leq \frac{1}{r} + \frac{1}{r-1} + M_{r-2} \leq \dots \leq \underbrace{\frac{1}{r} + \frac{1}{r-1} + \dots + \frac{1}{1}}_{\text{Harmonic number}} = \ln r + O(1)
$$

In the above, we defined M_r by $(*)$

Constant factor improvement over deterministic halving: $\log |C|/\ln |C| = \log e = 1.44...$