Based on Rocco Servedio's notes

Lecturer: Siu On Chan

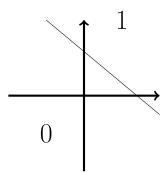
Notes 3: Winnow algorithms

1. Linear threshold functions (LTF)

Let $w \cdot x \stackrel{\text{def}}{=} \sum_{1 \leq i \leq n} w_i x_i$ (inner product between $w \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$) An LTF $f : \mathbb{R}^n \to \{0, 1\}$ has the form

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x \geqslant \theta \\ 0 & \text{otherwise} \end{cases}$$

for some weight vector $w \in \mathbb{R}^n$ and threshold $\theta \in \mathbb{R}$



Every disjunction is LTF, e.g. for $x \in \{0,1\}^n$

$$x_1 \lor x_2 \lor \overline{x}_3$$
 true \iff $x_1 + x_2 + (1 - x_3) \geqslant 1 \iff x_1 + x_2 - x_3 \geqslant 0$

Every 1-DL is LTF (why?)

2. Winnow1

Update weights multiplicatively

Learn k-sparse (i.e. involves k literals) monotone disjunctions using LTF hypothesis $O(k \log n)$ mistakes

When k really small (e.g. 5) and n really big, $O(k \log n)$ is better than n (in Elimination Algorithm)

 $_{ ext{-}} ext{Winnow}1$

Initialize: $w_1 = \cdots = w_n = 1$, θ fixed to be n

On input x, output hypothesis $h(x) = \mathbb{1}(w \cdot x \ge \theta)$ and get c(x)

False positive (h(x) = 1, c(x) = 0): For every i s.t. $x_i = 1$

Set $w_i = 0$ (demotion, in fact elimination)

False negative (h(x) = 0, c(x) = 1): For every i s.t. $x_i = 1$

Double w_i (promotion)

In fact non-zero w_i is always $1, 2, 4, 8, \ldots$ (power of 2)

Observation: no w_i is ever negative

Observation: in every promotion step, some x_i in c has its w_i doubled

Claim: Each w_i always < 2n

Reason: When w_i is doubled, x_i must be 1 and $w \cdot x < n$

Claim: #promotion steps $\leq k \log(2n)$

Reason: No x_i in c is ever eliminated, and is promoted $\leq \log(2n)$ times $(k \text{ many such } x_i)$

Lemma 1. $\#elimination \ steps \leqslant \#promotion \ steps + 1$

Proof. Let $W = \text{total weight} = \sum_{1 \le i \le n} w_i$ (initially n)

In each elimination step W decreases by $w \cdot x \ge n$ $(w_i \text{ becomes } 0 \text{ iff } x_i = 1)$

In each promotion step W increases by $w \cdot x < n$ (w_i doubled iff $x_i = 1$)

After e elimination steps and p promotion steps, $0 \le W \le n - en + pn$, so $e \le p + 1$.

Winnow1 makes $\leq 2k \log(2n) + 1 = O(k \log n)$ mistakes on k-sparse monotone disjunction Variation: During promotion, instead of doubling w_i , can multiply w_i with $\alpha > 1$; Threshold θ need not be n; See Littlestone if interested

Can Winnow1 learn non-monotone disjunction? (False positive kills it e.g. $c(x) = \overline{x}_1, x^1 = 11$) Or LTF with nonnegative weights? (Not without new ideas such as Winnow2)

3. Winnow2

Can assume threshold $\theta = 1$ (by rescaling w) An LTF $x \in \{0,1\}^n \mapsto \mathbb{1}(w \cdot x \geqslant 1)$ is δ -separated if $\forall x \in \{0,1\}^n$, either $w \cdot x \geqslant 1$ or $w \cdot x \leqslant 1 - \delta$

e.g. r-out-of-k threshold function

$$c(x) = \mathbb{1}(x_{i_1} + \dots + x_{i_k} \ge r) = \mathbb{1}\left(\frac{1}{r}x_{i_1} + \dots + \frac{1}{r}x_{i_k} \ge 1\right)$$

is 1/r-separated

```
Winnow2_
```

Initialize: $w_1 = \cdots = w_n = 1$, θ fixed to be n, α fixed to be $1 + \delta/2$ On input x, output hypothesis $h(x) = \mathbb{1}(w \cdot x \geqslant \theta)$ and get c(x)False positive (h(x) = 1, c(x) = 0): For every i s.t. $x_i = 1$ Divide w_i by α (demotion) False negative (h(x) = 0, c(x) = 1): For every i s.t. $x_i = 1$ Multiply w_i by α (promotion)

Claim 2. Winnow2 can learn δ -separated LTF with nonnegative weights $w \in \mathbb{R}^n$ with $O((\log n)\delta^{-2}\sum_{1\leq i\leq n}w_i)$ mistakes

Proof in Littlestone §5

k-sparse monotone disjunctions are 1-out-of-k threshold functions Winnow2 learns k-sparse monotone disjunctions with $O(k \log n)$ mistakes (direct proof in Blum §3.2)