CSCI4230 Computational Learning Theory Lecturer: Siu On Chan Spring 2021 Based on Rocco Servedio's notes

Notes 2: Online Mistake Bound Model

1. Online mistake bound model

A sequence of trials/rounds, each being:

- (1) An unlabeled example $x \in X$ arrives
 - (2) Algorithm maintains hypothesis $h: X \to \{0, 1\}$ and outputs h(x)
 - (3) Algorithm is told the correct value of c(x)
 - (4) Algorithm may update its hypothesis

Goal: minimize number of mistakes (i.e. $h(x) \neq c(x)$) on the worst sequence of examples and $c \in C$

Trivial mistake bounds: If X finite, #mistakes $\leq |X|$ (memorize c(x)) If C finite, #mistakes $\leq |C| - 1$ (try all $c \in C$)

2. Monotone conjuctions

A conjunction is **monotone** if all its literals are positive, e.g. $c(x) = x_2 \wedge x_4 \wedge x_5$

Elimination Algorithm

Initialize: $h(x) = \text{conjunction of all literals} = x_1 \land x_2 \land \dots \land x_n$ False negative (h(x) = 0, c(x) = 1):remove all literals that are false in xFalse positive (h(x) = 1, c(x) = 0):output FAIL

Invariant: h always contains all literals in c**Corollary:** Algorithm never fails #**Mistakes** $\leq n$: Each mistake removes at least one literal from hWe will see later that this bound is tight!

Variant 1: Monotone disjunction — same idea

Variant 2: non-monotone conjuction

Initial hypothesis begins with 2n literials $h(x) = x_1 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_2 \wedge \cdots \wedge x_n \wedge \overline{x}_n$ First mistake removes n literials, then at most n more mistakes (n + 1 total)

Variant 3: k-DNF for fixed constant k — same elimination idea

3. Decision lists

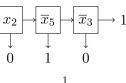
A 1-decision list (1-DL) has the form

if y_1 then output b_1 else if y_2 then output b_2

else if y_r then output b_r

else output b_{r+1}

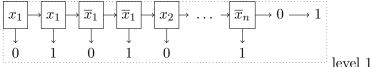
where y_i are literals, $b_i \in \{0, 1\}$ are bits e.g.



is 1-DL of length 3

Every 1-DNF is 1-DL, so is every 1-CNF Can assume no variable appears twice in 1-DL \Rightarrow length at most nHow many 1-DL of length r are there? about $(4n)^r \cdot 2$ (4n+2) rules: $4n \ "y_i \rightarrow b_i$ " and two " $\rightarrow b_i$ "

Algorithm to learn 1-DL of length r with O(nr) mistakes: Hypothesis has several "levels". It has all 4n + 2 rules, each belonging to one of the levels Rules of the same level are ordered arbitrarily, say lexicographically Initially all rules are at level 1



All rules of lower level come before rules of higher level On every sample x:

hypothesis h classifies x by the first rule whose condition is satisfied by x if h misclassifies x (i.e. $h(x) \neq c(x)$), move that rule to the next level

e.g. if x = 101, c(x) = 1, initial hypothesis misclassifies x due to " $x_1 \rightarrow 0$ " Move this rule to level 2 after the mistake

Claim 1. This algorithm makes $\leq (4n+2)(r+1) = O(nr)$ mistakes on any 1-DL of length r

Observation: 1st rule in c (call it r_1) is never moved above level 1 Reason: if h classifies x based on r_1 , h agrees with c since c also classifies x based on r_1 Observation: 2nd rule in c (call it r_2) is never moved above level 2

Reason: if h classifies x based on r_2 while r_2 is at level 2, r_1 must remain at level 1 by previous observation, thus x violates r_1 's condition, and h agrees with c since they both classify x based on r_2

Inductively, ith rule in c is never moved above level i

Conclusion: no rule is moved above level r + 2, because the last rule in c (which is unconditional) stays within level r + 1 in h, and h never classifies samples using any rule at level r + 2Each rule is moved at most r + 1 times, proving the claim

k-decision list (k-DL): like a decision list, but each condition y_i is a conjuction of at most k literals Algorithm to learn k-DL of length r — same idea