
CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan Based on Rocco Servedio’s notes

Notes 2: Online Mistake Bound Model

1. Online mistake bound model

A sequence of trials/rounds, each being:
(1) An unlabeled example x ∈ X arrives
(2) Algorithm maintains hypothesis h : X → {0, 1} and outputs h(x)
(3) Algorithm is told the correct value of c(x)
(4) Algorithm may update its hypothesis

Goal: minimize number of mistakes (i.e. h(x) ̸= c(x)) on the worst sequence of examples and c ∈ C

Trivial mistake bounds:
If X finite, #mistakes ⩽ |X| (memorize c(x))
If C finite, #mistakes ⩽ |C| − 1 (try all c ∈ C)

2. Monotone conjuctions

A conjunction is monotone if all its literals are positive, e.g. c(x) = x2 ∧ x4 ∧ x5

Elimination Algorithm
Initialize: h(x) = conjunction of all literals = x1 ∧ x2 ∧ · · · ∧ xn
False negative (h(x) = 0, c(x) = 1): remove all literals that are false in x
False positive (h(x) = 1, c(x) = 0): output FAIL

Invariant: h always contains all literals in c
Corollary: Algorithm never fails
#Mistakes ⩽ n: Each mistake removes at least one literal from h
We will see later that this bound is tight!

Variant 1: Monotone disjunction — same idea
Variant 2: non-monotone conjuction

Initial hypothesis begins with 2n literials h(x) = x1 ∧ x1 ∧ x2 ∧ x2 ∧ · · · ∧ xn ∧ xn
First mistake removes n literials, then at most n more mistakes (n+ 1 total)

Variant 3: k-DNF for fixed constant k — same elimination idea

3. Decision lists

A 1-decision list (1-DL) has the form

if y1 then output b1

else if y2 then output b2

...
else if yr then output br

else output br+1

where yi are literals, bi ∈ {0, 1} are bits
e.g.

x2 x5 x3 1

0 1 0

1

2

is 1-DL of length 3

Every 1-DNF is 1-DL, so is every 1-CNF
Can assume no variable appears twice in 1-DL ⇒ length at most n
How many 1-DL of length r are there? about (4n)r · 2
(4n+ 2) rules: 4n “yi → bi” and two “→ bi”

Algorithm to learn 1-DL of length r with O(nr) mistakes:
Hypothesis has several “levels”. It has all 4n+ 2 rules, each belonging to one of the levels
Rules of the same level are ordered arbitrarily, say lexicographically
Initially all rules are at level 1

x1 x1 x1 x1 x2 . . . xn 0 1

0 1 0 1 0 1 level 1
All rules of lower level come before rules of higher level
On every sample x:

hypothesis h classifies x by the first rule whose condition is satisfied by x
if h misclassifies x (i.e. h(x) ̸= c(x)), move that rule to the next level

e.g. if x = 101, c(x) = 1, initial hypothesis misclassifies x due to “x1 → 0”
Move this rule to level 2 after the mistake

Claim 1. This algorithm makes ⩽ (4n+ 2)(r + 1) = O(nr) mistakes on any 1-DL of length r

Observation: 1st rule in c (call it r1) is never moved above level 1
Reason: if h classifies x based on r1, h agrees with c since c also classifies x based on r1
Observation: 2nd rule in c (call it r2) is never moved above level 2
Reason: if h classifies x based on r2 while r2 is at level 2, r1 must remain at level 1 by previous
observation, thus x violates r1’s condition, and h agrees with c since they both classify x based on r2

Inductively, ith rule in c is never moved above level i
Conclusion: no rule is moved above level r + 2, because the last rule in c (which is unconditional)
stays within level r + 1 in h, and h never classifies samples using any rule at level r + 2
Each rule is moved at most r + 1 times, proving the claim

k-decision list (k-DL): like a decision list, but each condition yi is a conjuction of at most k literals
Algorithm to learn k-DL of length r — same idea

	1. Online mistake bound model
	2. Monotone conjuctions
	3. Decision lists

