
CSCI4230 Computational Learning Theory Spring 2021
Lecturer: Siu On Chan

Notes 1: Introduction; Learning Models
Textbook: An Introduction to Computational Learning Theory, Michael J. Kearns and Umesh V.
Vazirani
This course (and notes) will mostly follow Servedio’s, Diakonikalas’, and Kanade’s
Theory course — homeworks & exams about proofs; no programming
Pre-requiste: Discrete Math, Probability, math maturity

1. Introduction

This course focuses on (binary) classification problem in supervised learning

Input: training samples (x1, y1), . . . , (xn, yn)
Output: hypothesis h ⊆ X

xi: an instance/features; yi ∈ {0, 1}: category
e.g. xi are emails; yi ∈ {spam,not spam}
e.g. xi are documents; yi ∈ {English,not English}

samples xi belong to instance space X (typically X = {0, 1}n or Rn)
assume samples are classified according to unknown concept c ⊆ X i.e. yi = 1(xi ∈ c)
Here 1 denotes the indicator function
c belongs to known concept class C (some collection of subsets of X)
Want output hypothesis h to be close to unknown concept c
Will also think of c and h as X → {0, 1} (indicator functions)

2. Examples of problems (concept classes)
2.1. k-DNF (disjunctive normal form) formulae.
boolean variables x1, x2, . . . , xn
literals x1, x1, x2, x2, . . . , xn, xn (a variable or its negation)
k-DNF formula: disjunction of terms, each term being conjuction of at most k literals
3-DNF e.g. (x1 ∧ x5 ∧ x9) ∨ (x4 ∧ x7 ∧ x8)
1-DNF (also called disjunction) e.g. x1 ∨ x8 ∨ x4 ∨ x2

2.2. k-term DNF formulae.
k-term DNF formula: disjunction of k terms, each being conjuction of (any number of) literals
2-term DNF e.g. (x1 ∧ x2 ∧ x3 ∧ x4) ∨ (x2 ∧ x6 ∧ x7)

2.3. k-CNF (conjuctive normal form) formulae.
k-CNF formula: conjunction of terms, each term being disjuction of at most k literals
1-CNF (also called conjunction) e.g. x1 ∧ x8 ∧ x4 ∧ x2
3-CNF e.g. (x1 ∨ x5 ∨ x9) ∧ (x4 ∨ x7 ∨ x8)
Every k-term DNF is equivalent to k-CNF, because ∨ distributes over ∧, i.e.

(u ∧ v) ∨ (x ∧ y) = (u ∨ x) ∧ (u ∨ y) ∧ (v ∨ x) ∧ (v ∨ y)

But some k-CNF has no equivalent k-term DNF when k ⩾ 2

3. Overview of some models
3.1. Probably Approximately Correct (PAC) model.
Valiant’84 seminal paper “A Theory of the Learnable”
Assume instances x drawn from an unknown but fixed distribution D over X
Random instances, hence more realistic than worst case instances
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3.2. PAC model with random noise.
Random classification noise: each sample’s label yi is corrupted independently with probability η, for
some fixed η > 0
3.3. Online model.
Examples arrive online; classify each example before the next arrives
Sequence of examples may be worst case or random
3.4. Active learning.
Learning algorithm can choose example x and query c(x)

Questions we will ask:
(1) Given concept class C, how many samples suffice to learn c ∈ C?

e.g. C = {conjunctions}
(2) How many samples are needed?
(3) Given random samples, how to efficiently learn c ∈ C?

Even with enough samples to information-theoretically learn c ∈ C, there may not be efficient
algorithm
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