
CSCI 4230: Computational Learning Theory Homework 2
The Chinese University of Hong Kong, Spring 2021 due 11:59pm Monday March 15

Collaborating on homework is encouraged, but you must write your own solutions in your own words
and list your collaborators. Copying someone else’s solution will be considered plagiarism and may
result in failing the whole course.

Please answer clearly and concisely. Explain your answers. Unexplained answers will get lower scores
or even no credits.

(1) (20 points) Let d ⩾ 1 and C be the set of axis-aligned hyperrectangles in Rd, i.e.

C = {R(a, b) | a, b ∈ Rd}

where R(a, b) = {x ∈ Rd | ai ⩽ xi ⩽ bi for 1 ⩽ i ⩽ d} is the hyperrectangle with opposite
corners a and b.

Show that VCDim(C) = 2d. Explain in details how you get the lower and upper bounds.
Hint: Generalize Section 6.3.3 of the Shalev-Shwartz–Ben-David reference book.

(2) (30 points) We now show the VC dimension of linear threshold functions in n-dimensional
Euclidean space is n+ 1, generalizing the result in Notes05.

In the following, given a finite set S = {s1, . . . , sk} of points in Rn, the convex hull of S
contains every convex combination of points in S, that is, the convex hull contains every point
that can be written as

∑
1⩽i⩽k λisi such that λi ⩾ 0 and

∑
1⩽i⩽k λi = 1.

Let C be the concept class of linear threshold functions in Rn.
(a) Prove that VCDim(C) ⩾ n + 1. In other words, find a set of n + 1 points in Rn that is

shattered by C.
Prove that your set is shattered.

(b) Show that VCDim(C) ⩽ n+ 1 using Radon’s Theorem, which says:
Radon’s Theroem: Any set S of n + 2 points in Rn can be partitioned into two
disjoint subsets S1 and S2 whose convex hulls intersect.

(c) Prove Radon’s Theorem.
Hint: Useful fact from linear algebra: Any n + 1 points x1, . . . , xn+1 in Rn are linearly
dependent, that is, there are real numbers λ1, . . . , λn+1, not all zeros, such that λ1x1 +
· · ·+ λn+1xn+1 = 0.
Hint: You may prove Radon’s Theorem by first proving the following statement:
Any n+2 points x1, . . . , xn+2 in Rn are affinely dependent, that is, there are real numbers
λ1, . . . , λn+2, not all zeros, such that λ1x1 + · · ·+ λn+2xn+2 = 0 and λ1 + · · ·+ λn+2 = 0.

(3) (20 points) Consider PAC learning s-sparse disjunctions. The end of Notes09 outlines the “Fur-
ther Improved Algorithm” that finds a disjunction h(x) consistent with all negative samples
and 1− ε/2 fraction of positive samples, using Greedy Heuristic for Set Cover.
(a) Argue that h(x) involves at most s ln(2/ε) literals.
(b) State and prove a variant of Theorem 2.1 of Notes09 and apply your theorem to show the

following:
Let c be any s-sparse disjunction. Given O

(
1
ε

(
ln 1

δ + s ln 1
ε lnn

))
independent samples

drawn from EX(c,D), with probability ⩾ 1 − δ, Further Improved Algorithm outputs a
hypothesis h(x) with error ⩽ ε.
(The key part is to justify why O

(
1
ε

(
ln 1

δ + s ln 1
ε lnn

))
samples suffice.)

(4) (20 points) In this problem, we want to show that properly PAC-learning monotone k-sparse
disjunctions is NP-hard, by reducing from Set Cover.

To this end, give a polynomial-time reduction from Set Cover to the following problem:
Sparse Monotone Disjunction
Input: labelled samples (x1, y1), . . . , (xm, ym) where xi ∈ {0, 1}r and yi ∈ {0, 1}
Goal: Find sparsest monotone disjunction h consistent with all labels, i.e.

h(xi) = yi for 1 ⩽ i ⩽ m
Sparsest means h involves as few literals as possible.
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In other words, your algorithm reads an input instance I of Set Cover and convert it to an
input instance I ′ of Sparse Monotone Disjunction, such that
I has a small Set Cover if and only if I ′ has a sparse monotone disjunction
Justify why your reduction algorithm works.
(Techniques from Notes11 can further reduce from Sparse Monotone Disjunction to the

corresponding proper learning problem, but you are not required to show this latter step.)

(5) (10 points) Show that for every d ⩾ 0 and every m ⩾ 0, there is a concept class C of VC
dimension d over an instance space X and a subset S ⊆ X such that |S| = m and |ΠC(S)| =(
m

0

)
+

(
m

1

)
+ · · ·+

(
m

d

)
.


