CSCI 5440: Cryptography Lecture 11
The Chinese University of Hong Kong 13 April 2011

In this lecture we describe the main ingredient that will allow us to turn any two-party protocol that
is secure for honest-but-curious parties into one that is secure even when the parties are malicious:
zero-knowledge proofs.

As we described in the last lecture, the idea is to augment each message that Bob sends to Alice (and
vice versa) by some additional interaction whose purpose it is to certify that Bob acted honestly.
One way for Bob to prove he is honest is by revealing his private input and randomness. In that
case, Alice can check that Bob is behaving the way he is supposed to. However, Bob’s privacy is
then compromised.

Zero-knowledge proofs are a technology that allow Bob to convince Alice of the validity of some
statement (in this case, the statement that his message is consistent with his private input and ran-
domness) without revealing any private information. In fact, after the zero-knowledge interaction
Alice will find no information about Bob beyond the fact that the statement in question is true.
Alice will not be able to “extract” any additional information about Bob even if she behaves in a
malicious way.

Instead of trying to provide zero-knowledge proofs for a specific protocol that we may be interested
in, it is more instructive (and conceptually simpler) to develop a theory of zero-knowledge proofs
that applies to any statement of interest. To describe this theory, we will need a bit of computational
complexity. Before we do that let us start with some examples that illustrate some of the ideas
behind zero-knowledge.

1 A real-world zero-knowledge interaction

Before we go into zero-knowledge for two-party computations, let me give a “real-world” example
of a zero-knowledge interaction. Coca Cola and Pepsi are two popular drinks of a similar taste.
Some people claim that Coca Cola is much better and they would never touch Pepsi, while others
say the opposite. Yet others cannot tell the difference and wonder what the whole fuss is about.

Now imagine that Bob comes to Alice and tells her that Coke tastes much better than Pepsi. Alice,
who cannot tell the difference between the two, is quite incredulous and decides to put Bob to the
test. To do so, she buys some Coke and Pepsi from the market as well as ten plastic cups. She
pours Coke in the first five cups, Pepsi in the other five, and permutes the cups in the random
order, remembering what she put in each cup. Bob takes a sip from all the cups and tells Alice
which ones have Coke and which ones have Pepsi in them.

If Bob is the connoisseur he claims to be, he can correctly tell the contents of all the cups. If,
on the other hand, his claim that he can distinguish between the two drinks is false, then all (150)
orderings of the cups look alike to him, and no matter what strategy he uses to make his claims,
the chance that he gets all the answers correct is at most 1/ (150) < 4%. So if Bob managed to pass
the test, Alice can have good confidence that Bob can tell the difference between the two drinks.

This is a (real-world) example of an interactive proof. After receiving a claim from Bob and engaging
in an interaction with him, Alice can say with good confidence that Bob’s claim is correct.

However, after engaging in this interaction, Alice obtained some additional information beyond
the fact that Bob can tell the difference between Coke and Pepsi. Suppose that the bottles from
which Alice was pouring drinks were unlabeled, so she doesn’t know which has Coke and which
has Pepsi. After the interaction, she is still convinced that Bob can tell the difference (because he
gives consistent answers). However, assuming the Bob is honest, she also gains some additional
information, for example what is the drink in the first glass.

But now suppose they change the rules of the game and play like this: Before Bob gives his answers,
he chooses random names for the two drinks, say “drink A” and ”drink B”. With probability 1/2
he labels Coke as “drink A” and Pepsi as “drink B”, and with probability 1/2 he labels Pepsi as
“drink A” and Coke as “drink B”. Then he answers the questions not by Coke and Pepsi, but by
drink A and drink B instead.

Now here is what an interaction between Alice and Bob will look like. Alice has two bottles, bottle
1 and bottle 2, one of which contains Coke and the other one Pepsi (but she is not sure which).
She wants to know Bob can tell the difference between the two drinks. She pours five glasses from
the first bottle and five from the second bottle, permutes the glasses randomly and presents them
to Bob:

1 121 2 2 2 1 2 1.

If Bob is dishonest, then all of the glasses look the same to him, so when asked what is in each glass,
he will give some random jumble of As and Bs, which are unlikely to correspond to this pattern of
1s and 2s. If Bob can tell the difference between Coke and Pepsi, then he will know which drink is
in each glass. After choosing a random labeling for Coke and Pepsi, he comes up with the following
answer:

A A B A B B B A B A with probability 1/2, 1)
B B A B A A A B A B with probability 1/2.

Either way, Alice can be quite certain Bob can tell the difference. However, she has learned no
additional information from the interaction: She can simulate the distibution (1) all by herself!

2 Graph isomorphism

Let us now give a digital analogue of this real-world example. The example is a bit contrived, but
it will help us illustrate some definitional issues regarding zero-knowledge.

We say two undirected graphs G and H on n vertices are isomorphic if there is a 1-1 correspondence
between the vertices that preserves the edges. More precisely, there is a 1-1 map ¢ from the vertices
of G to the vertices of H so that (u,v) is an edge in G if and only if (¢(u),p(v)) is an edge in H.
For example, the following two graphs G and H are isomorphic:

2/1\ P i
‘ 5 5

3\/ 3

4 4

The isomorphism that maps G to H is given by

2 3 4 5

3 5 2 4.

In this example, it is easy to see that the two graphs are isomorphic. But it may not be so easy
when the graphs are large:

Now suppose Alice and Bob are both given two graphs G and H and Bob claims that he knows an
isomorphism ¢ from G to H. How can he convince Alice this is the case? One thing he can do is
send Alice the values ¢(z) for every z, at which point Alice can check that ¢ is an isomorphism:
First, she checks that ¢ is a permutation over the set {1,...,n} where n is the number of vertices
of G and H and then she verifies that for every pair of vertices (u,v), (u,v) is an edge in G if and
only if (¢(u), ¢(v)) is an edge in H.

However, after seeing Bob’s proof, in addition to learning that G and H are isomorphic, Alice
gains some additional knowledge — the isomorphism between G and H. Is there a way for Bob to
convince Alice that G and H are isomorphic without revealing the isomorphism?

We will now see how to do so. In the description of the protocol we will use the following piece of
notation: Let G be a graph and ¢ be a permutation on the vertices of G. We will write ¢(G) = I
if I is the graph obtained by applying the permutation ¢ to the vertices of G and permuting the
edges accordingly (i.e., (¢(u), ¢(v)) is an edge of I if and only if (u,v) is an edge of G.)

Graph Isomorphism Protocol: Alice and Bob are given a pair of graphs (G, H) on n vertices.
In addition, Bob has a permutation (isomorphism) ¢ such that ¢(G) = H.
B: Choose a random permutation p on the set of vertices of G. Send the graph p(G) to Alice.

A: Upon receiving the graph I, choose a random bit b ~ {0,1}. If b = 0, send the message G to
Bob. If b =1, send the message H to Bob.

B: If you receive the message G, send the permutation p to Alice. If you receive H, send the
composed permutation po¢ to Alice. (This is the permutation given by (po¢)(u) = p(¢(u)).)

A: Upon receiving the permutation 7: If you sent G, accept iff 7(G) = I. If you sent H, accept
ifft m(H) = 1.

You can think of the message G as a request by Alice to see an isomorphism between G and I, and
the message H as a request for an isomorphism between H and I.

If the graph G and H are isomorphic and Alice and Bob both follow the protocol, Alice will clearly
always accept: The graph I she sees is isomorphic to both G and H, and Bob can produce the
required isomorphism in either case.

What happens if G and H are not isomorphic? Then ¢ cannot be an isomorphism between G and
H, and the protocol we described is ill-defined. However, a malicious Bob can still attempt to trick
Alice into believing that G and H are isomorphic. What are his chances of success? In the first
round, Bob sends some graph I to Alice, which may or may not be isomorphic to G or H. The key
observation is that if G and H are not isomorphic, then I cannot be isomorphic to both of them at
the same time. If I is not isomorphic to G, then with probability 1/2 in round two Alice will ask to
see an isomorphism between G and I, which Bob will be unable to produce. If I is not isomorphic
to H, Bob similarly fails with probability 1/2. So no matter what strategy Bob uses, he will fail to
convince Alice with probability at least 1/2.

This is quite similar to the Coke versus Pepsi test, except that the probability of failure is lower
—1/2 as opposed to 1 — 1/ (150). By repeating the protocol k times independently, this probability
can be made as high as 1/2F.

Now suppose again that G and H are isomorphic and Bob is honest. What has Alice learned after
interacting with Bob? First she sees a graph I and then she sees some permutation 7. If she
chooses b = 0, then Bob sends her the permutation m = p such that 7(G) = I; but Alice could have
easily come up with this view by herself by first choosing 7 at random, and then setting I = 7(G)!
If she chooses b = 1, then Bob sends her the permutation m = p o ¢ for which #(H) = I. But no
matter what ¢ is, if p is random, then 7 will also be random, and so again Alice can simulate her
view by first choosing a random permutation 7 and then choosing I such that w(H) = I. In either
case, Alice has gained no information by running the protocol (beyond the knowledge that G and
H are isomorphic)!

Notice that in this discussion, we never assumed that Alice had to behave honestly. The place
in the protocol where Alice can possibly cheat is by choosing her bit b in some way that is not
random; perhaps after seeing p in the first round, she can try to bias b in a way that allows her to
gain some extra information. We just argued that this is not possible: Even if Alice is dishonest,
whatever she has observed after the interaction, she would be able to simulate without engaging in
the interaction at all.

3 Zero-knowledge proofs
Let us summarize the properties of the graph isomorphism protocol we just analyzed:

e If Bob has an isomorphism ¢ between G and H and both Alice and Bob behave honestly,
Alice accepts with probability one.

e If G and H are not isomorphic, then no matter what Bob does, if Alice is honest she accepts
with probability at most 1/2.!

e If Bob has an isomorphism ¢ between G and H and he is honest, then no matter what
Alice does, she gains no knowledge from the interaction (beyond the fact that G and H are
isomorphic). Specifically, Alice can run a simulator that produces a distribution on views by
Alice that is identical to her distribution on views in the real interaction.

"We do not make any requirement when G and H are isomorphic, but Bob is not given the isomorphism ¢.

This is a bit different from the setting of secure two-party computation. In secure two-party
computation, Alice and Bob have symmetric roles: Each gets a private input, and they want to
compute a joint functionality without revealing their inputs. In zero-knowledge, the role of Bob is
to convince Alice of the truth of some statement — that her two graphs are isomorphic. He could
easily do so by providing the solution — the isomorphism. However, he wants to do it in a way that
preserves the privacy of his solution.

Now let’s consider under what circumstances it would make sense for Alice and Bob to behave
maliciously. If ¢ is an isomorphism from G to H, he has no incentive of cheating, as Alice cannot
find out anything from the interaction. On the other hand, if ¢ is not an isomorphism from G to
H, Bob is in some sense forced to cheat, so we do not impose any restrictions on the knowledge
gained by Alice. (Bob can always prevent Alice from gaining any knowledge by sending dummy
messages.)

To define zero-knowledge proofs we first need to define what is a proof. Here we will view proofs
from a verification perspective: Suppose you are grading homeworks and you need to check that
all the solutions are correct. You don’t really care about how the students came up with their
solutions (plagiarism issues aside).

A proof relation R is a relation over pairs (x,y) called the statement and the proof. We view the
statement (z,y) € R as saying that y is a correct proof of z. In the graph isomorphism example, z
is the pair of graphs (G, H), y is the isomorphism ¢, and ((G, H), ¢) € R if and only if ¢(G) = H.

Definition 1. A (s,¢) zero-knowledge proof system with simulation overhead oh(-) for proof relation
R over pairs (x,y) is a pair of interactive algorithms (A, B) where

e Completeness: If (z,y) € R, then Pr(s(,) p(ay))[A accepts] = 1.
e Soundness: If (z,y*) ¢ R for every y*, then for every B*,

Pr(A(I)7B*(x))[A accepts] < 1/2_

e Zero-knowledge: If (z,y) € T, then for every algorithm A*, there exists an algorithm S*
such that view 4+ (z,y) and S*(z) are (s,) computationally indistinguishable. Moreover,

running time of S*(z) < oh(running time of A*(x))

(where the running time is measured with respect to the interaction (A, B)(z, (x,y)).)

In completeness and soundness, the probability is taken over the internal randomness of the parties
in the protocol. Let us now explain the zero-knowledge condition. Notice the soundness condition
assumes not only that Bob’s candidate solution y is invalid for x, but that no such solution y*
exists at all.

Informally, this condition says that every view by Alice — even if she is malicious — in the real
interaction can be simulated. But how much time should the simulation take? We cannot give a
specific bound, because the time it takes (a malicious) Alice to perform the simulation may depend
on the time she is willing to invest to break privacy. It seems reasonable to require that the time
invested by Alice for simulation related, and not too much larger than, the time it takes Alice to
run the protocol. We formalize this by giving a simulation overhead function t(-) that relates the
running time of the simulator to the running time of Alice in the actual protocol. Intuitively, the
lower the simulation overhead is, the more secure the protocol should be.

Simulation overhead for graph isomorphism Let us compute the simulation overhead in the
graph isomorphism protocol. When computing this quantity we have to be careful and consider
as part of Alice’s view not only the messages she received from Bob, but also the ones she sent to
him.

Alice’s view in the graph isomorphism protocol is (I, b, 7, d), where ¢ is the permutation she receives
in the first message, b is her response (G or H), I is the graph she receives in the third round, and
d is her decision to accept or reject. Let A* be any interactive algorithm that plays Alice’s part in
a possibly malicious way.

An elegant way to simulate view a4« (z,y) is like this: First, S* guesses the value b* ~ {0,1} at
random and chooses a random permutation 7. If b* = 0, it sets I = «(G); if b* = 1, it sets
I = w(H). It then runs A*(x), simulating Bob’s first message as I. If b* = b, it simulates Bob’s
third message as m, then runs A* to compute the decision d and outputs (I, b, 7,d). If b* # b, it
restarts the whole simulation from scratch.

Conditioned on S*(z) producing an output, the output is then identically distributed to view 4« (z, y).
What is the running time? The question is tricky because the way we defined it the simulation
may never produce an answer. But suppose now that we allow only for r restarts and if all of them
fail, S*(z) just outputs something arbitrary. Since b* is random and independent of b, at every
step the chance of requiring a restart is 1/2; so the probability of requiring more than r restarts
is 277. To summarize, the distribution S*(z) is identical to view4-(x,y) with probability at least
1 — 27" (over the internal randomness of S*). It follows that in general, the distributions S*(x)
and view g« (z,y) are (00, 27") computationally indistinguishable.

If we set r = logy 1/, we satisfy the requirement of (oo, €) zero-knowledge. The simulator S* runs
log, 1/ rounds of the following: First, choose a random permutation 7 and a random b*, compute
as m(G) or w(H), and simulate A* using I and 7 as responses. The running time of this simulation
is

(logy 1/¢) - (running time of A*(z)) + O(nlogn)

where O(nlogn) is the time it takes to flip a random bit and generate a random permutation. We
just proved the following:

Theorem 2. The interactive protocol (A, B) is an (00,€) zero-knowledge proof system for graph
isomorphism with simulation overhead oh(t) = O(t-log1/e) + O(nlogn), where n is the number of
vertices of G and H.

4 Hardness of 3-coloring

Was there anything special about graph isomorphism that allowed Bob to prove its existence in
zero-knowledge? Looking at the protocol, it seems we used a lot of special properties about graphs,
isomorphisms, and random permutations. Amazingly, it turns out that (assuming one-way functions
exist) the answer is no: Any (correct) proof whose correctness can be checked reasonably fast can
be verified in a zero-knowledge manner also reasonably fast!

To explain how this works we will need a bit of complexity theory. Complexity theory gives us many
examples of proof relations that are “complete”: All other proof relations are (in a well-defined
sense we will see shortly) special cases of it. You may have already seen some such relations like
SAT (boolean formula satisfiability) or CLIQU E. The one we will need today is called 3COL (for

graph 3-colorability). Given a graph G on n vertices, a candidate 3-coloring is an assignment of one
of three colors {R,G,B} to the vertices of G. (If we order the vertices, a candidate 3-coloring can
be represented as a string in {R,G,B}" like RRGRGB.) We say the candidate 3-coloring col is valid
for G if no two adjacent vertices are assigned the same color. Here are some examples of valid and
invalid 3-colorings:

1 1
2 2 \ 2
| 5 | 5
3 3 / 3 /
Ty Ty TSy
RGRGB RGRGR BGRGR
valid invalid invalid

(Notice the following difference between the last two examples: In the second example, this particu-
lar 3-coloring is invalid, but there exists another valid one. In the third example, no valid 3-coloring
exists.)

The proof relation 3COL is defined as
(G, col) € 3COL iff col is a valid 3-coloring of G.

Completeness of graph 3-coloring We now describe the sense in which 3COL is a “complete”
proof relation. To do this we need the notion of a verifier for a proof relation.

A werifier for a proof relation R is an algorithm V(x,y) that accepts if (z,y) € R, and rejects
otherwise. We already saw a verifier for graph isomorphism: It takes the graphs G and H and
the purported isomorphism ¢ and checks that (u,v) is an edge in G if and only if (¢(u), ¢(v)) is
an edge in H for all pairs of vertices (u,v). A verifier for graph 3-coloring is no more difficult to
design: The verifier takes as inputs G' and col, goes over all edges of GG, looks up the colors of the
corresponding endpoints in col, rejects if a violation is ever detected, and rejects otherwise.

We will assume that the running time of V' only depends on z and is independent of y.

One nice thing about the verifiers for both graph isomorphism and 3-coloring is that they are both
efficient: The running time of the verifier is proportional to the size of the input (the statement
plus the solution). We will only be interested in proof relations with efficient verifiers; after all, if
we use the verifier as part of a two-party computation, it better be that Alice and Bob can run this
verifier efficiently.

The graph isomorphism and 3-coloring questions look totally unrelated (apart from them both
being questions about graphs, but this is a superficial connection). Amazingly, it turns out that
they are very closely related to one another! Suppose we are given two isomorphic graphs and want
to find the isomorphism. This may be hard, but imagine also that we have solved an unrelated
problem: Given a 3-colorable graph G, we can find a 3-coloring for it. Then using our solution to
the 3-coloring problem, we can also solve the graph isomorphism problem!

We will not give the details of this (see lecture notes 1 and 2 of CSCI5170) but let us describe
the formal framework. In the case of graph isomorphism and 3-coloring, there exists a pair of
algorithms (RSt, RPf) (statement and proof reduction) with the following properties:

http://www.cse.cuhk.edu.hk/~andrejb/csc5170/notes/10L1.pdf
http://www.cse.cuhk.edu.hk/~andrejb/csc5170/notes/10L1.pdf

1. RSt takes as inputs a pair of graphs (G, H) and produces as output a graph C. The graph
C has a valid 3-coloring if and only if there is an isomorphism from G to H.

2. RPf takes as inputs a pair of graphs (G, H) and an isomorphism ¢ from G to H, and outputs
a valid 3-coloring for the graph C.

The size? of C' and the running times of RSt and RPf are O((|G| + |H|)?).

This example is an instance of a general theorem, which says that any proof relation (with an
efficient verifier) can be “reduced” to 3COL.

Theorem 3. For every proof relation R with verifier V', there is a pair of algorithms (RSt, RPf),
with running time quadratic in the running time of V(x,-), so that if (x,y) € R then RPf(x,y) is
a valid 3-coloring for the graph RSt(x), and if (z,y*) & R for all y*, then RSt(x) does not have a
valid 3-coloring.

5 Zero-knowledge proofs for all theorems

Theorem 3 says that in some sense, 3COL is “the hardest” among all proof relations. So if we can
design a zero-knowledge proof for 3COL, then we can obtain one for all proof relations of interest,
including the ones that come up in the protocol for honest-but-curious secure 2-party computation
from last lecture.

We now describe this zero-knowledge proof for 3COL. Alice’s input is a graph G, Bob’s input is a
graph G together with a 3-coloring col for GG, and Bob wants to convince alice that G is 3-colorable,
without revealing any additional information (about col or anything else).

The key property of 3-colorings that we need (and the reason we chose to work with this problem
in the first place) is that they have a very useful symmetry: Suppose we have a valid 3-coloring
col of G and we permute the identities of the colors, say R — B, G — G, B — R. Then the resulting
coloring is still a valid 3-coloring for G.

There are six possible permutations on 3-colorings; let’s denote them by 7,..., 7. In addition
to these permutations, we will need a commitment scheme (Com, Rev) (for trits instead of bits).
Here is how the protocol works (when Alice and Bob are both honest):

Graph 3-Coloring Protocol: Alice and Bob are given a graph G on n vertices; in addition, Bob

has a valid 3-coloring col for G.

B: Choose a random number b € {1,...,6} and applies the permutation 7, to every coordinate
in his coloring. For every vertex v, compute a commitment Com(K,, coly(v)) to the color of
vertex v in the coloring col,. Send all the commitments to Alice (in a specific order).

A: Upon receiving the commitments C1,. .., C,, choose a random edge (u,v) of G and send this
edge to Bob.

B: Upon receiving the edge (u/,v’), send the keys K,» and K, to Alice.

2This is the number of bits that it takes to describe C; for a graph, it roughly equals the number of vertices plus
the number of edges.

A: Reveal the colors R, = Rev(K,/,C,) and R, = Rev(K,,C,). If R, # R,, accept, otherwise
reject.

The functionality of this protocol is clear: If col is a valid 3-coloring for G, then the commitments
C,, and C, will always refer to different colors when (u,v) is an edge of G, and upon revealing these
commitments Alice accepts with probability 1.

Let us now argue soundness:

Claim 4. Assume that (Com, Rev) is an (s,€) secure commitment scheme. Let G be a graph with
m edges that does not have a valid 3-coloring. Then for every B* of size at most s,

Pr(A(G)’B*(G))[A accepts] <1 —1/m.

The probability 1 — 1/m + ¢ is not that low; it can be improved by repeating the protocol (in
sequence) several times. One can also use alternative versions of graph coloring to achieve a lower
success probability.

Proof. By the binding property of (Com, Rev), for every commitment C, there is a unique key
K, and color col’(v) such that Rev(K,,C,) = col’(v). Since G is not 3-colorable, it must be that
col'(u) = col'(v) for at least one edge (u,v) of G, regardless of the algorithm B*. If Alice happens
to select this edge (u,v), then she detects an inconsistency with the coloring and rejects. Since
there are m possible edges, this happens with probability at least 1/m.]

Finally, we are left with zero-knowledge: We want to say that no matter what Alice tries to do, she
can simulate her view from the interaction when col is a valid 3-coloring of G and Bob is honest.
Let’s get some intuition for this. At the end of the first round, Alice sees some commitments
Ci,...,Cy, to a color each. By the hiding property of commitments, Alice should have no idea
what is the color in each commitment, so she can simulate this distribution by committing to
arbitrary colors. Based on these commitments, Alice decides to send an edge (u,v) to Bob. (If
Alice is malicious, this edge may not be random). Bob then sends the keys that would allow Alice
to reveal the colors coly(u) and colp(v). From Alice’s perspective, this is now just a pair of random
different colors (since b is random): She could have created this distribution herself by committing
to two random different colors in the first step!

This suggests the following simulation strategy S*(G). First, S*(G) guesses at random the edge
(u',v") that Alice will query in round 2. It then chooses a random pair of colors (col, col}) for u
and v (there are six possibilities), and chooses a fixed color — say col, = R — for all the other vertices
w. To simulate the first round, it outputs the commitments Cy, = Com (K, col;(w)), where K, is
a random key.

For the second round, S*(G) uses A*(G) to find out its message (u,v) in the second round that
is obtained upon seeing the commitments Cy,. If (u,v) # (u/,v), the simulator fails and restarts
(with fresh randomness). Otherwise it simulates the third round by the message (K, K,), and it
simulates A* in the last round and outputs its answer.

Conditioned on S*(G) not failing, its output is distributed “almost” like view 4« (G, col). The only
difference comes from the commitments: In the real interaction, Bob commits to the real coloring
coly, while the simulator creates a fake coloring col*. The only way that these two colorings make it
into the real and simulated views is via the commitments Com(K,, coly(u)) and Com(K,, colj(u))

for all vertices u. By assumption, any two such commitments are (s,¢) computationally indistin-
guishable. By a hybrid argument, it follows that conditioned on not failing, the real and simulated
views are (s — O(ntcom), ne) computationally indistinguishable, where ¢y, is the time it takes to
compute a commitment of one trit.

In each round, the probability of the simulation failing is 1/m; so after repeating for r rounds, the
simulation succeeds with probability (1 —1/m)". Setting r = 4mlog,1/e, we obtain a simulator
S*(G) with simulation overhead oh(t) = O(tmlog1/e 4+ ntcom) which produces a simulated view
that is (s — O(ntcom), (n + 1)e) indistinguishable from the real one.

Summarizing our analysis, we obtain the following theorem:

Theorem 5 (Zero-knowledge for 3-coloring). Assume (Com, Rec) is an (s,e) secure commitment
scheme for values {0,1,2}. Then the graph 3-coloring protocol is an (s — O(ntcom), (n+ 1)e) zero-
knowledge proof system with simulation overhead oh(t) = O(tmlog1/e + ntcom) for 3COL. Here
toom 1S the circuit size of Com and n and m is the number of vertices and edges of G, respectively.

10

	A real-world zero-knowledge interaction
	Graph isomorphism
	Zero-knowledge proofs
	Hardness of 3-coloring
	Zero-knowledge proofs for all theorems

