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1. Each of the 150 ENGG2430 students shows up to class independently with probability 0.9
and asks Poisson(0.05) questions in there. Let S be the number of students in class and Q
the total number of questions asked. Find (a) E[S], (b) E[Q|S], (c) E[Q], (d) Var[E[Q|S]], (e)
Var[Q|S], (f) E[Var[Q|S]], (g) Var[Q].

Solution: Let Qi be the number of question asked by the i-th student present in class;
Q = Q1 + · · ·+QS .

(a) E[S] = 150 · 0.9 = 135.

(b) E[Q|S] =
∑S

i=1 E[Qi] = S · 0.05 = 0.05S by linearity of expectation.

(c) E[Q] = E[E[Q|S]] = E[0.05S] = 0.05 · 135 = 6.75 by (b).

(d) Var[E[Q|S]] = Var[0.05S] = 0.052 Var[S] = 0.052 · (150 · 0.9 · 0.1) = 0.03375 by (b).

(e) Var[Q|S] =
∑S

i=1 Var[Qi] = S · 0.05 = 0.05S by independence of Qi’s.

(f) E[Var[Q|S]] = E[0.05S] = 6.75 by (e).

(g) Var[Q] = Var[E[Q|S]] + E[Var[Q|S]] = 6.78375 by (d) and (f).

2. 100 people put their hats in a box and each one pulls a random hat out.

(a) Let G be any 10-person group. What is the probability that everyone in G pulls their
own hat?

(b) What is the expected number of 10-person groups in which everyone pulls their own hat?

(c) Show that the probability that 10 or more people pull their own hat is less than 10−6.

Solution:

(a) The probability that the first person in the group pulls their own hat is 1/100. Given
this happened, the probability that the second person in the group does so is 1/99, and
so on. So the probability that everyone in the group succeeds is 1/(100 · 99 · · · 91).

(b) Let XS be the random variable indicating that everyone in group S pulled their own
hat. Then the number of people who pulled their own hat X is the sum of the random
variables XS . By linearity of expectation, E[X] is the sum of E[XS ] = 1/(100 · 99 · · · 91)
over all 10-person groups S. As there are

(
100
10

)
ways to choose a 10-person group,

E[X] =

(
100

10

)
· 1

100 · 99 · · · 91
=

1

10!
.

(c) By Markov’s inequality, the probability that at least one group succeeded in pulling all
of their own hats is at most

P(X ≥ 1) ≤ E[X]

1
=

1

10!
≈ 2.7557× 10−7 < 10−6

3. In a school fair, you put up a game stall. In each game, the participant pays you $10, he
or she then draws a ball from a box of 9 white balls and 1 red ball, if the ball drawn is red,
you pay $40 back, otherwise the participant gains nothing. Estimate the probability that you
have gained $300 after 100 games.



Solution: Let $X be the total amount of money collected. We want to estimate P(X ≥ 300).
X is the sum of 100 independent random variables with the same PMFs so we can use the
Central Limit Theorem. We have

µ = E[X] = 100× (10× 0.9 + (−30)× 0.1) = 600

σ =
√

Var[X] =
√

100× ((10− 6)2 × 0.9 + (−30− 6)2 × 0.1) =
√

100 · 144 = 120

Therefore,
P(X ≥ 300) ≈ P(X ≥ µ− 2.5σ) ≈ P(N ≥ −2.5) ≈ 0.9938,

where N is a Normal(0, 1) random variable.

4. 100 balls are tossed at random into 100 bins. Each ball is equally likely to land in any of the
bins, independently of the other balls.

(a) Find the expected number and variance of the number of non-empty bins.

(b) Show that there are fewer than 80 non-empty bins with a probability at least 90%.

Solution:

(a) It is a bit easier to count the number E of empty bins. The number N of non-empty
bins is then 100− E. We can write E as E1 + · · ·+ E100, where Ei indicates that bin i
is empty. By linearity of expectation,

E[E] = E[E1] + E[E2] + · · ·+ E[E100] =
100∑
i=1

P(Xi = 1) = 100 · p,

where p = 0.99100, so E[N ] = 100 − 100 · 0.99100 ≈ 63.3968. To calcluate the variance
we apply the sum of covariances formula:

Var[E] =
100∑
i=1

Var[Ei] +
∑
i 6=j

Cov[Ei, Ej ].

Each of the variances Var[Ei] equals p(1 − p) = 0.99100(1 − 0.99100). As for the covari-
ances,

Cov[Ei,Ej] = E[EiEj ]− E[Ei] E[Ej ] = P(Ei = 1 and Ej = 1)− P(Ei = 1) P(Ej = 1).

The probability that both bins i and j are empty is 0.98100 as all the balls must go into
the other 98 bins, so each covariance term equals 0.98100−(0.99100)2. Putting everything
together we get

Var[E] = 100 · (0.99)100 · (1− 0.99100) + 100 · 99 ·
(
0.98100 − (0.99100)2

)
≈ 9.7401.

Since N = 100− E, N has the same variance as E.

(b) The expectation of N is µ ≈ 63.3968 and its standard deviation is σ ≈
√

9.7401 ≈ 3.1209.
By Chebyshev’s inequality,

Pr(N ≥ 80) ≤ Pr(N ≥ µ+ 5.3200σ) ≤ Pr(|N − µ| ≥ 5.3200σ) ≤ 1/5.32002 ≈ 0.0353,

so P(N < 80) ≥ 1− 0.0353 = 0.9647 > 95% as required.

For comparison, Markov’s inequality gives a much looser bound of

P(N < 80) = 1− P(N ≥ 80) ≥ 1− 63.3968/80 ≈ 0.2075.

The Central Limit Theorem does not apply because the Ei are not independent.



5. Consider the following simplified model of infection spread. On any given day, any carrier
independently infects one additional person with probability p and is cured with probability
1− p. The number Xd of virus carriers on day d is given by Xd = 2 · Binomial(Xd−1, p).

(a) Let ed = E[Xd]. Express ed in terms of ed−1. What is ed in terms of X0, p, and d?

(b) Show that when X0 = 100 and p = 0.4, the probability 100 or more people are carriers
on day 21 is less than 1%.

(c) Let vd = Var[Xd]. Express vd in terms of vd−1.

(d) (Optional) Show that when X0 = 100 and p = 0.6, the probability that 100 or more
people are carriers on day 21 is more than 95%.

Solution:

(a) Since Xd is 2 · Binomial(Xd−1, p), E[Xd|Xd−1] = 2Xd−1p and

ed = E[E[Xd|Xd−1]] = E[2Xd−1p] = 2ped−1

Applying the relation recursively and using e0 = X0, we have

ed = 2ped−1 = (2p)2ed−2 = · · · = (2p)de0 = (2p)dX0

(b) When X0 = 100, p = 0.4, e21 = 100(0.8)21. By Markov’s inequality,

P(X21 ≥ 100) ≤ E[X21]

100
= (0.8)21 ≈ 0.0092 < 0.01

(c) By the total variance theroem,

vd = E
[
Var[Xd|Xd−1]

]
+ Var

[
E[Xd|Xd−1]

]
= E[22 ·Xd−1p(1− p)] + Var[2Xd−1p]

= 4p(1− p) · (2p)d−1X0 + (2p)2vd−1

= 2(1− p)X0 · (2p)d + 4p2vd−1

(d) Set C = 2(1− p)X0, then we can write vd = C(2p)d + (2p)2vd−1.
Applying the relation recursively and using v0 = 0, we have

vd = C(2p)d + (2p)2vd−1

= C(2p)d + (2p)2 · (C(2p)d−1 + (2p)2vd−2)

= C(2p)d + C(2p)d+1 + (2p)4vd−2

= C(2p)d + C(2p)d+1 + (2p)4 · (C(2p)d−2 + (2p)2vd−3)

= C(2p)d + C(2p)d+1 + C(2p)d+2 + (2p)6vd−3

= · · ·
= C(2p)d + C(2p)d+1 + C(2p)d+2 + · · ·+ C(2p)2d−1 + (2p)2dv0

= C(2p)d · (2p)d − 1

2p− 1

For X0 = 100, p = 0.6 and d = 21, C = 80 and vd = 400(1.2)21(1.221 − 1).
Then µ = E[X] ≈ 4600.51, σ =

√
Var[X] ≈ 910.05.

By Chebyshev’s inequality, we have:

P(X ≥ 100) ≈ P(X ≥ µ− 4.9453σ) ≥ P(|X − µ| ≤ 4.94σ) ≥ 1− 1

4.942
≈ 0.9590.


