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Abstract

Recent technological advances in digital signal processing, data compression techniques, and
high speed computer networking have made on-demand multimedia servers feasible. A chal-
lenging task in multimedia systems is to service multiple clients simultaneously, while satisfying
the real-time requirement for continuous delivery of objects at specified rates. To accomplish
these tasks and realize economies of scale associated with servicing a large user population, a
multimedia server can require a large disk subsystem. Although a single disk is fairly reliable,
a large disk farm can have an unacceptably high probability of disk failure. Further, due to the
real-time constraints, the reliability and availability requirements of multimedia systems can be
more stringent than those of traditional information systems. In this paper we focus on the
main tradeoffs and issues associated with providing fault tolerance in multidisk VOD systems.
We illustrate these tradeoffs through a discussion of several fault tolerance schemes and present
a framework for a performability evaluation of possible design choices.

1 Introduction

Recent technological advances in digital signal processing, data compression techniques, and high
speed computer networks have made Video-on-Demand (VOD) servers feasible. Challenging tasks
in designing such large scale systems include not only satisfying the real-time constraints of contin-
uous delivery of objects, which has been addressed in the following proposals [3, 22, 19, 5, 16, 20, 10]
(to name a few) in the form of various data layout and scheduling algorithms, but also providing a
high degree of reliability and availability. To exhibit reasonable economies of scale, the VOD server
should contain a large number of disks; something on the order of 1000 drives would not be uncom-

mon. For example, a storage subsystem of 1000 (1 gigabyte) disks would provide enough storage
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for approximately 220 (100 minute) MPEG-2 movies (at about 6 Mbits/sec) or approximately 880
MPEG-1 movies [9] (at about 1.5 Mbits/sec) or some combination of the two. Similarly, assuming a
bandwidth of 4 Mbytes/sec, 1000 disk drives provide enough bandwidth to support approximately
5300 concurrent MPEG-2 users or 21,300 MPEG-1 users. Although a single disk can be fairly
reliable, given such a large number of disks, the aggregate rate of disk failures can be high. For
instance, if the mean time to failure (MTTF) of a single disk is on the order of 300,000 hours,
then the MTTF of some disk in a 1000 disk system is on the order of 300 hours (or 12.5 days).
Several works on fault tolerance schemes for VOD servers have appeared in the last few years; these
include [2, 6, 11, 17, 22, 23]. The issues and tradeoffs involved in providing fault tolerance in a

cost-effective manner is the focus of this paper.

We first give a general architectural overview of a VOD system. A large-scale VOD server
consists of a tertiary storage library, a collection of disks, and a set of processors. The entire
database permanently resides on tertiary storage, from which objects are retrieved and placed on
disk drives for delivery on demand. The long latency times and high bandwidth cost of tertiary
devices usually preclude most objects from being transmitted directly from the tertiary store. And
the high cost of buffer space usually precludes most objects from being permanently stored in main
memory. Given this architecture, a disk failure does not result in data loss, since a copy of each
object is stored on tertiary storage. However, a disk failure can result in interruption of requests
in progress. If some of the data for an object currently being displayed is on a disk that fails, then
a discontinuity in delivery, termed a hiccup, occurs. Since portions of many objects typically reside
on a disk, a single disk failure can cause hiccups in the display of multiple objects. These hiccups
will occur each time an access to the failed disk is attempted and will continue until a reloaded
operational disk replaces the failed disk. Rebuilding a failed disk from tertiary storage can be a
slow process. Loading a standby disk with the missing data requires portions of many objects to
be loaded from the tertiary storage and many tapes may need to be referenced. Therefore, without
some form of fault tolerance, such a system is not likely to be acceptable. That is, providing fault
tolerance schemes in VOD servers is essential, since, given the size of the disk subsystem, duration
of videos, and the real-time constraints, it is not acceptable to be unable to recover from disk failure

in real time.

We can divide the existing approaches to fault tolerant design of VOD servers into two categories:
redundancy-based techniques (e.g., [2, 22]) and non-redundancy-based techniques (e.g., [23]). That
is, redundancy-based techniques, such as parity-based or replication-based schemes, are those that

store redundant information which, under failure, is used to reconstruct the missing data. Whereas



non-redundancy-based techniques exploit the redundancy that is “inherently” present in video
data in order to approrimate the missing information without the use of redundant information. In
this paper, we focus on redundancy-based techniques, partly because there has been significantly
more work done in this area and partly because the loss of image quality in non-redundancy-based
schemes is somewhat difficult to evaluate. Note that, this loss of quality is a persistent problem,

unlike momentary jitters experienced by some redundancy-based schemes.

Redundancy-based techniques can further be subdivided into two categories: (1) those that
exploit sequentiality of video data delivery, e.g., [2] and (2) those that disregard sequentiality of
video data delivery, e.g., [6]. That is, one can either exploit the fact that video display can be
“pre-planned” and layout and retrieve data such that the information retrieved for reconstruction
of missing data can be utilized for normal display as well. Or, one can disregard the fact that
this information can be utilized for normal display (and not just reconstruction of missing data),
and thus discard the data blocks retrieved for reconstruction, i.e., the reading of data blocks for
normal display is scheduled independently from the reading of possibly the same data blocks for

the purpose of reconstructing (and displaying) the data missing due to failure.

This means that a fundamental tradeoff in choosing one or the other type of an approach is
between I/O bandwidth and buffer space. That is, by using a sequential-type scheme, we can
utilize the I/O bandwidth better by retrieving each data block only once, and using it for both
normal display and reconstruction purposes; however, this efficiency in I/O bandwidth utilization
is achieved at the cost of additional buffer space, since the blocks retrieved for reconstruction
of missing information must be buffered until they are needed for normal display. In contrast,
when using a non-sequential-type scheme, we can discard data as soon as reconstruction of missing
information is complete, and hence there is no need for additional buffer space; however, this
efficiency in buffer space utilization is achieved at the cost of inefficient bandwidth usage, since,
even under normal operation, we must reserve sufficient I/O bandwidth during scheduling of data
retrieval so as to be able to access all the information needed for reconstruction of missing data,
in real time, when a failure does occur — this includes both parity information and the surviving

data blocks in the same parity group.

Since it is not immediately clear how to compare savings in I/O bandwidth with savings in
buffer space, one approach is to assess this tradeoff through cost considerations. Thus, a meaning-
ful performance measure is $/stream, i.e., one can compare alternative fault tolerance schemes by

considering: (a) the overall cost of the system based on system requirements, e.g., in terms of the



cost of disks plus main memory, which are dictated by I/O bandwidth, buffer space, and storage
for fault tolerance needs, and (b) the maximum number of streams that can be simultaneously
supported by the corresponding VOD architecture. It is worth noting that different schemes have
their optimum operating points at different architectural configurations; thus it is not the case
that one fault tolerance scheme is absolutely better than another, but rather that one must under-
stand the system requirements and constraints (e.g., minimum number of simultaneously supported
streams) and then choose a fault tolerance scheme accordingly. Finally, it must also be noted that
the reliability characteristics (such as MTTF) of a particular fault tolerance scheme should not be
neglected, since that is the initial motivation for this work; however, it is reasonable to compare

schemes which are above an “acceptable” reliability threshold based on the §/stream metric.

In the remainder of this paper, we describe and compare approaches for providing redundancy-
based fault tolerance in VOD servers. We use the following metrics in our (performability) com-

parison of these schemes:

e available disk storage space (for storage of “real” data)
e  buffer space requirements

e  available disk bandwidth (for delivery of “real” data)

e reliability!

e  maximum number of simultaneously supported streams

o cost per stream

The organization of the remainder of the paper is as follows. In Section 2 we briefly present
background information on design of VOD servers as well as some simple schemes for providing
fault tolerance in VOD servers, which we use as “baseline” cases in the remainder of the paper.
In Sections 3 and 4 we present various sequential and non-sequential fault tolerance schemes,
respectively, as well as discuss the associated tradeoffs. In Section 5 and 6 we present analysis of
these schemes, and in Section 6 we discuss their respective merits. Section 7 gives our concluding

remarks.

"Mean time to failure and mean time to degradation of service (these will be defined later in the paper).



2 Background

We begin this section with a description of a simple disk model and some basic concepts of scheduling
of video streams — these will aid in further description of the various fault tolerance schemes as
well as the associated performance tradeoffs. We will also give a brief description of a RAID-
based technique for providing fault tolerance in traditional systems and then describe two simple
schemes for providing fault tolerance in VOD systems — a RAID-based sequential-type scheme
and a RAID-based non-sequential-type scheme. These two schemes will serve as “baseline” cases
for the remainder of the paper. In the context of these baseline cases, we will illustrate the basic

tradeoffs associated with these two types of approaches.

2.1 Video Scheduling

In this section we give a brief description of the notion of scheduling video requests in cycles or
groups. We will use the term stream to refer to the delivery of a given object at a given time.
To achieve efficient use of available disk bandwidth, it is common to organize the scheduling of
streams into (time) cycles or groups, e.g., as in [5, 22]. In their simplest form, cycle-based schemes
deliver in each cycle the data that is read in the previous cycle. During each time period, data
for each active stream is read from the disks into main memory while, concurrently, the data read
during the previous cycle is transmitted over the network to display stations. The motivation for
this organization is to provide opportunities for seek optimization in order to increase the effective
bandwidth of the system; the blocks read from a disk during a cycle can be read in any order (since
they are not transmitted until the next cycle), for instance using an elevator type algorithm, and
thus seek times can be optimized. The main disadvantage of cycle-based scheduling is the memory
buffers required to hold the data read during one cycle until it is transmitted in the next cycle. In
the remainder of this paper, for the sake of clearity and brevity, we will consider fault tolerance

schemes in the context of cycle-based scheduling only, unless otherwise stated?.

It is useful to generalize the idea of a cycle as follows (also refer to [2]). Define a unit, B, of disk
I/O and let by be the bandwidth requirement of an object. Let k; be the number of disk storage units
that are transmitted per cycle per object. If T,y is the length of a cycle, then Tey, = (k¢ * B)/bg.

Then if k, disk storage units are read in a cycle for a stream, where k, is an integer multiple of k;,

2Qualitatively similar tradeoffs can be illustrated in the context of non-cycle-based scheduling techniques.



then the data read in one “read cycle” is delivered over the next k,/k; cycles. This is illustrated in

Figure 1, where Ai refers to block i of object A.
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Figure 1: Multiple transmission cycles per read cycle.

Finally, in this paper, we will assume the use of constant bit rate (CBR) data retrieval schemes
(e.g., as in [3]), which provide an abstraction of a fixed rate video stream. Furthermore, we will
assume provision of guaranteed quality of service (QoS) (e.g., as in [3]). This assumption will be
reflected in our models and analysis of the various schemes, as we will have to provide for worst
case possibilities and construct upper bounds on system parameters (e.g., cycle time). Note that,
an alternative to CBR schemes and guaranteed QoS provisions would be variable bit rate (VBR)
schemes (e.g., as in [14]) and/or statisical QoS provisions (e.g., as in [8]). For ease and clarity
of exposition we will not consider VBR schemes and/or statistical QoS provisions here; however,
many of the issues and tradeoffs discussed in the context of CBR schemes and guaranteed QoS

would apply to VBR schemes and/or statistical QoS as well.

2.2 Disk Model

We will assume in the remainder of the paper (unless otherwise stated) that the unit of disk I/O
is a track. This is motivated by the reduction in rotational latency® achieved as well as by the
amortization of the seek overheads over a “large enough” data transfer. We assume for example,
that a full track read is started at the next possible sector boundary and therefore there is very

little rotational latency.

We use the following simple disk model (as in [2]) for the purpose of discussing basic performance
tradeoffs. We will use the following notation for the study and comparison of the different fault

tolerance schemes:

3 Assuming, of course, that the disk is able to start the read at any sector on a track.



Tseek maximum seek time between the extreme inner and outer cylinders of a disk

Tork maximum time attributable to reading a track (or maximum time attributable
to rotational delay) plus the slowdown and the speedup of the read/write head of
the seek time [21]; as in [2], we model this as a cost associated with the reading

of a track as opposed to being part of the seek cost.
Tread maximum time attributable to reading a track (or maximum time attributable to

rotational delay) not including the slowdown and the speedup of the read/write

head of the seek time
B the number of bytes per track (in megabytes)

N

number of disks in the system

w size of the video collection of the system (not including the parity information)
(in gigabytes)

S the capacity of a disk (in megabytes)

Ty (r) maximum time to read r tracks?

Ty(r) = Tseek + 7 * Tork

this equation basically defines the simple disk model

Teye the cycle time (sec)

N (maximum) total number of active streams in a system

N 5 f maximum number of active streams possible, per disk, under a cycle-based
scheme P, without provisions for recovery from failure in real time

Né) maximum number of active streams possible, per disk, under a fault tolerant
scheme P, i.e., with provisions for recovery from failure in real time, N f <N é} f

k, number of tracks read in a “read cycle” per stream

ki number of tracks transmitted per stream per cycle; we will assume for simplicity

that k, is an integer multiple of k;, where ],g—: — 1 = number of cycles between

“read cycles” for the same stream

bo object bandwidth (in MBytes/s)
MTTF mean time to failure of the system
MTTDS mean time to degradation of service of the system

MTTF(disk) mean time to failure of a disk
MTTR(disk) mean time to repair of a disk

“This is the time to read tracks for the schemes where the retrieval unit is an integral number of tracks. We will
describe a scheme where the retrieval unit is a multiple number of sectors, and in this case the rotational delay will
have to be included in the model. In Section 5, we will explore this in more detail. We should also mention that the

equation give for T}(r) is an upper bound — a motivation for this is provisions of guaranteed QoS, as explained in



In terms of the above notation the following expression characterizes Tey. [2]:

ki« B
Tcyc = tb
0

This follows from the definition of a cycle in Section 2.1. For the purpose of computing N, an
upper bound on the number of streams that can be supported by the system, we assume that the
load is evenly spread over the D disks in the system so that there are N—I’Skﬂ tracks to be read per
disk per “read cycle”. Then, a constraint, expressing that there must be sufficient time in a cycle
to read this number of tracks, is:

N*kr* <kt*B
D Ttrk > b

N x k,
T D < Tcyc = Tseek T+

Using this inequality, we can solve for a bound on N or equivalently on N/D, the number of streams

per disk:
B * kt

Nel}f = N/D < [ - Tseelc:| /[kr * Ttrk] . (1)

where P refers to a particular cycle-based scheme being used.

2.3 Traditional Redundancy-based Schemes

To improve the reliability and availability of a large information system, we can use some fraction
of the disk space to store redundant information. Typically, parity-based schemes[18] and mirroring
schemes[4] have been used for this purpose®. One important goal in designing fault tolerant systems
is decreasing the probability of data unavailability while incurring the least cost in disk storage,
disk bandwidth, and buffer space. Multiple disks can fail (as long as they are not in the same
parity group), and the missing data can still be reconstructed on-the-fly. Only in the unlikely event
of two disks in the same parity group failing, would a rebuild from tertiary storage be necessary.
This last type of system failure, involving two disks in the same parity group we will refer to as
catastrophic failure. In a catastrophic failure, portions of objects have to be loaded from tertiary
storage devices to reconstruct the contents of the failed disk(s) on spare disk(s). There is another
serious type of system failure which we will refer to as degradation of service, that can occur when
there is insufficient available resources, due to failures, to continue delivering all active requests even

though there may still be sufficient information on the disk subsystem to reconstruct the missing

Section 2.1.

Variations on these redundancy schemes, e.g., [15, 6], will be discussed later in the paper.



information. For instance, a single disk failure in a cluster could result in no loss of data, however,
the loss of the disk may result in insufficient bandwidth to continue delivery of all requests that
were active before the failure occurred. In this case, one or more active requests might have to be

terminated and rescheduled for transmission at a later time.

There are three modes of operation for a disk subsystem [15], as originally defined in the context
of disk arrays: 1) normal mode, where all disks are operational, 2) degraded mode, where one (or
more) disks have failed, and 3) rebuild mode, where the disks are still down, but the process of
rebuilding the missing information on spare disks is in progress. Due to lack of space, in this paper

we only discuss the system’s behavior under normal and degraded modes of operation.

2.4 RAID-based Schemes for VOD Servers

In this section we discuss RAID-based approaches and use them to illustrate the basic tradeoffs and
issues in providing fault tolerance in VOD servers. In the remainder of the paper, these schemes

serve as “baseline” cases.

RAID-based sequential-type scheme (Streaming RAID)

An example of a sequential-type fault tolerance scheme is the Streaming RAID (SR) approach [22]°,
where disks are grouped into fixed size clusters of C' disks each with one parity disk and C — 1
data disks. The set of data blocks, one per data disk, and a parity block form a parity group (see
Section 2.3). Each object is striped over all the data disks for load balancing. The sequence of
parity groups associated with an object are allocated in a round-robin fashion over all the clusters.
For each active stream, a parity group is read in each cycle and delivered to the network in the
subsequent cycle. Since C' — 1 data tracks are read for a stream in each cycle, k, = C' — 1 and,

since they are all delivered in the next cycle, k; = C — 1 (see Section 2.1).

In the event of a disk failure, SR can reconstruct the missing data by a parity computation.
Since an entire parity group is read for each active stream in each cycle, if a disk has failed then
the missing data that would have been read from that disk can be reconstructed on-the-fly from

the other data blocks and the parity block from the same parity group, without hiccups’. Note

5In what follows we describe a slight generalization of the approach presented in [22].
"To account for the computation time to perform the XOR, it may be that the fetch portion of a cycle has to

be scheduled to end some number of milliseconds prior to the beginning of data transmission. But this is a minor

complication which is not discussed any further in this paper.



that, a RAID5-type organization (where the parity blocks are precessed among all the disks in a
cluster) will not alleviate the necessity to reserve (i.e., not utilize under normal operation) % of a
cluster’s bandwidth, since sufficient bandwidth to read parity information must still be reserved,

in order to recover from failure in real time.

This scheme can withstand up to one disk failure per cluster before a catastrophic failure occurs
(or before there is a degradation of service)®. Thus, the main advantage of the Streaming RAID
scheme is its high reliability. However, that reliability is gained at the cost of disk storage, disk
bandwidth, and buffer space.

Note that, the SR scheme exhibits the same performance characteristics under failure as it does
under normal operation. This is partly due to the fact that it exploits the sequential nature of video
data delivery and thus, under failure, utilizes the information retrieved for reconstruction of missing
data for normal display, i.e., no additional bandwidth is needed under failure. The tradeoff here is
the amount of buffer space required to store data, needed for reconstruction of missing information,
which is retrieved much earlier than is required by the display rate of the video. Thus, a major
disadvantage of the SR approach is the large amount of main memory required per disk. (Of course,
a fraction of the disk storage and bandwidth is “wasted” for reliability purposes as well.) Note
that, an incentive for a large cluster size is the greater efficiency with respect to disk bandwidth and
disk storage (i.e., proportionatly less redundant information will have to be stored and retrieved).
However, this must be balanced with the cost of additional main memory which grows linearly

9. In Section 3 we will discuss schemes which address the problems of both

with the cluster size
high memory requirements and bandwidth loss and improve on this simple sequential approach.
In Sections 5 and 6 we will quantify the above mentioned tradeoffs as well as the improvements

discussed in Section 3.

RAID-based non-sequential-type scheme (RAID5)
An alternative to the SR scheme would be to still use a RAID-based system, but disregard the
sequentiality of video data delivery. That is, we could use a traditional RAID5 (R5) system, with

a (basically) arbitrary construction of parity groups'®. Data retrieval can proceed one block at a

8In this scheme, as will become apparent later, catastrophic failures and degradation of service are “equivalent”.
9We could achieve a small improvement in buffer space requirements by not reading the parity information during

normal operation; however, that could result in hiccups in data delivery during the cycle in which the failure occurs.
ONote that, this means that parity groups may be constructed from data blocks belonging to different video

objects.
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time (i.e., k, = 1 and k; = 1) and thus obviate the need for large amounts of buffer space!!. Thus,
this scheme precludes the possibility that, under failure, information retrieved for reconstruction of
missing data can also be utilized for normal display. This means that, to be able to recover from
failure in real time, we would have to reserve disk bandwidth in the system to insure that when a
failure does occur, there will be sufficient bandwidth to retrieve enough information to reconstruct
the missing data and to continue with delivery of all requests that were active before the failure.
Of course, some additional buffer space would also be needed under failure, for retrieval of data

required for reconstruction of missing information.

The R5 scheme is just as reliable as the SR scheme. Furthermore, it exhibits better buffer space
utilization characteristics. However, its bandwidth utilization characteristics are quite a bit poorer
than those of the SR scheme. In a (basically) read-only system, like a VOD server, a failure of
one disk in a cluster results in double the load on all other disks in that cluster. Thus, in the R5
scheme we would have to reserve half of the system’s bandwidth to insure real-time recovery from
disk failure. In other words, we would obtain a large reduction in buffer space requirements at the
cost of significant bandwidth loss. In Section 4 we will discuss schemes which address the problem
of such high bandwidth loss and improve on this simple non-sequential approach. In Sections 5 and

6 we will quantify the above mentioned tradeoffs as well as the improvements discussed in Section
4.

3 Sequential Schemes

In this section, we discuss sequential-type schemes which improve on various inefficiencies of the

basic SR approach (as described in Section 2.4).

3.1 Improving Buffer Space Requirements

As mentioned earlier, one of the inefficiencies of the RAID-based sequential-type approach is the

large buffer space requirement (see Section 2.4). In this section we discuss two schemes, the Stag-

UThere is almost no advantage to reading full parity groups in this case; since most of the blocks in the parity
group (except for the one needed for transmission in the next cycle), would be discarded, the only advantage of
reading the whole parity group at once would be to prevent hiccups in data delivery during the cycle in which the

failure occurs.
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gered group scheme and the Non-clustered scheme, which address this problem.

Staggered-group scheme

The Staggered-group scheme (SG), a simple extension to SR, suggested in [22]'2 and [2], addresses
the main disadvantage of SR, namely the large buffer space requirements, by eliminating the idea
that all the data read in one cycle must be delivered in the next cycle. Thus, in this scheme the
only difference from the SR scheme is that the data read for an object in one cycle is delivered
to the network over the following n cycles. As an example, suppose that we have clusters of size
C = 5. Then during a cycle that an object A is being read, 4 tracks of real data for A will be
read. If we let a cycle length be equal to %, then the four cycles following the read of the data for
A will be used to deliver this data. Once every 4 cycles the next parity group is read for A. So the
last “transmission” cycle overlaps with the next “read” cycle for A. Similarly, each active stream
has the same pattern which repeats every 4 cycles. The SG scheme in effect uses k&, = C —1
and k; = 1 since the cycle length is dictated by the display time of one track of data. Similar
“grouping” schemes (although not in the context of fault tolerance or SR) have appeared in other
studies [5]. Also, the “prefetching with parity disk” scheme described in [17] is essentially the same
as the SG scheme, except that data for each object is read one block at a time, instead of an entire
parity group at a time; however, the entire parity group is still stored in memory before its first

block is transmitted for display.

The SG scheme has the following characteristics, in comparison with SR: (1) it requires approx-
imately half the memory, (2) the data layout on disk is exactly the same, (3) the only difference in
data retrieval is that data read for an object in one cycle can be transmitted over the next several
cycles (rather than all in the next cycle), (4) fault tolerance characteristics are the same, and (5)
there is a slight cost in disk bandwidth overhead. The savings of approximately half the memory
are due to the fact that memory usage is “out of phase” for all streams assigned to different read
cycles when one stream is at the point of maximum memory usage (just read its parity group) other
streams are at the low ebb of their memory usage. The reason for some loss of disk bandwidth
utilization (less streams can be handled) is that the cycles are now shorter and there are fewer
requests served per disk per cycle and that in turn means that there are less “opportunities” for

seek optimization!3; this loss in seek optimization is quantified in Section 5.

21n [22] it was referred to as “memory sharing with subgrouping and subcycling”.
13The tradeoffs between improving bandwidth utilization by amortizing seeks over a greater number of streams

and increases in buffer space resulting from reading more streams per cycle are investigated in [5].
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Non-clustered scheme

In the SR scheme as well as in the SG scheme, an entire parity group is read for each active stream
before its first block is transmitted for display (as is the case in the “prefetching with parity disk”
scheme in [17], except that it is read one block at a time). This requires a relatively large amount of
memory to be allocated to store all the blocks read until they are transmitted. Below we discuss a
scheme, introduced in [2], where the constraint of reading an entire parity group before transmitting
its first block for display is removed (as we will see later, this could results in a minor degradation
in reliability). So, in effect, the cluster size is decoupled from the value of k., the number of blocks
read per object per “read” cycle. In Sections 5 and 6 this Non-clustered(NC) scheme is shown to

provide even larger savings in memory (as compared to the SG approach).

All the schemes described thus far are designed to adapt immediately to disk failures without
missing the scheduled delivery of any data. It is important to note that most of the memory in the
SR and the SG schemes is needed to be able to provide this level of fault tolerance rather than being
needed for normal (i.e., fault-free) operation. These observations suggest that much memory could
be saved if a (slightly) lower level of fault tolerance were acceptable. Thus, instead of reading an
entire parity group in one cycle, we can read only the data which will be delivered during the next
cycle. The savings in memory from this scheme as compared to the SR scheme are approximately a
factor of C, where C is the number of disks in a cluster. However, this Non-clustered (NC) scheme
does not exhibit as good reliability characteristics as the SR or the SG schemes. When a disk
failure occurs, in order to recover from it, the affected disk cluster switches to degraded mode of
operation, where each stream on this cluster reads an entire parity group at a time, i.e., a cluster
operating in degraded mode under the NC scheme behaves just like a cluster operating in normal
mode under the SG scheme. There is a short transition phase as the cluster switches to degraded
mode, and during this transition phase, some data may be lost and consequently a small number of
momentary hiccups will occur. However once the transition to degraded mode is complete, all data
will be delivered according to the degraded mode schedule and no additional hiccups will occur.
A more accurate description, with smaller data losses and a more detailed discussion of the NC

scheme is given in [2].

Note that, if we provide sufficient memory for each cluster in the system to be able to operate
under failure, then the buffer space requirement of NC will not be any better than those of the SG
scheme. Rather than requiring each cluster to have sufficient memory to run in degraded mode
(which is a rare event), an architecture is needed in which (a relatively small amount of) additional

buffers space, needed under failure, can be shared, i.e, used by any failed cluster. For instance, as
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suggested in [2], there could be one or more extra processors containing a buffer pool to help handle
clusters operating in degraded mode. These buffer servers could be shared by all the clusters in
the system. A cluster in degraded mode sends the data read from the disk to the buffer server and
the buffer server takes care of creating the missing data by parity computation and delivering the
data on time. (Of course, other architectures are possible.) In a typical system, there might be 100
clusters of 10 disks each, but buffer servers for 5 degraded mode clusters would be sufficient as the
probability of more than 5 out of the 100 clusters having a failed disk is extremely low. The mean
time to having 5 clusters simultaneously operating in degraded mode is approximately:
MTTF(disk)®
1000 * 999 * 998 x 997 x 996 * MTT R(disk)*

With MTTF (disk) = 300,000 hours and MTT R(disk) = 1 hour, the mean time until degradation
of service (i.e., until utilize all the shared buffer space) would be greater than 250 million years,
whereas the mean time to a catastrophic failure (i.e., two failed disks in the same cluster) would
be approximately 1141 years. This basically indicates that there is little degradation in system
reliability due to providing enough buffer space for only a few clusters to operate under failure, i.e.,
it is very likely that there will be a catastrophic failure before the system runs out of buffer space

for supporting failed clusters.

3.2 TImproving Bandwidth Requirements

Thus far we have described sequential-type schemes that have dealt with poor utilization of the
buffer space resource. However, one problem which still remains with these schemes is that they can
exhibit relatively poor utilization of the bandwidth resource. This can largely be attributed to the
fact that in all these schemes the parity disks are not needed during normal operation and therefore
their bandwidth, during normal operation, is available but not utilized — it is held in reserve in case
of a failure!*. Below, we describe the Improved-bandwidth (IB) approach, introduced in [2], which
addresses this problem; that is, it utilizes the full bandwidth of the system under normal operation
but is still able to react to disk failure in real time. For simplicity we discuss this approach in the

framework of the SR scheme, but the IB technique is applicable to other schemes as well.

Improved-bandwidth scheme

Note that, a RAID5-type organization (where the parity blocks are precessed among all the disks in a cluster)
will not alleviate this problem, since sufficient bandwidth for reading parity information must still be reserved, in

order to recover from failure in real time.
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One way to address the problem of wasted bandwidth resources (for reliability purposes), as de-
scribed above, is to distribute the parity information associated with data on disk cluster ¢ over the
disks of disk cluster ¢+ 1. For instance, in Figure 2, X0p, stored on disk 4 of cluster 1, is the parity
information for (X0, X1, X2, X3), which are stored on disks (0, 1,2, 3) of cluster 0. In this scheme,
a failure of a disk in cluster 4, will result in an additional load on cluster i + 1 (refer to Figure 2).
Therefore, one important issue in the design of the IB scheme is to be able to accommodate this

additional load in real time. When a disk failure occurs in cycle ¢ in cluster 4, then cluster ¢ and

requi é% reading of AOp
bump data block AO and reconstruction

Cluster 0 Cluster 1 Cluster 2
A A A

r AN AR N N
X0 || X1 |\ X2/]| X3 +AO || Al || A2 || A3 KO || K1 || K2 || K3
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Figure 2: Improved Bandwidth Approach Applied to SR

its right hand neighbors have to perform a “shift to the right” as follows. Cluster i delivers data
from all its operational disks plus it reconstructs the missing data by reading the appropriate parity
blocks residing on disks of cluster ¢ + 1. Those disks of cluster ¢ + 1 that do not have sufficient
idle disk bandwidth to serve both the local requests and the parity blocks requests from cluster
drop some of the local requests in favor of reading the parity blocks!5. The dropped local requests
are treated as a partial disk failure of cluster ¢ + 1 which generates parity block requests on cluster
i + 2. Note that of these dropped blocks, no more than one can be from each parity group. This
shift has to propagate to the right until enough idle capacity is found. If there is not enough
bandwidth available in the system, then a degradation of service occurs, and one or more requests
must be terminated and (possibly) rescheduled at a later time. This situation can arise under two

conditions; we elaborate on these conditions below.

The major advantage that this scheme has as compared to the schemes described thus far is

5This is similar to how “chained declustering” [13] handles failures; note also, that the Improved-bandwidth

approach basically degenerates to the chained declustering approach when the parity group size is equal to 1.
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the additional bandwidth available during normal operation. However, it is not as reliable as, for
instance, the SR scheme. The number of possible scenarios where the second failure turns out to be
catastrophic is greater in this system than with the SR scheme. In general, an SR or an NC system
with K clusters, can withstand up to K failures, as long as there is no more than one failure per
cluster, before data is lost. In the IB scheme, a failure in each of any two adjacent clusters results
in some data loss. Thus an IB system with K clusters can possibly withstand up to % failures
before some data is lost. The increased sensitivity to a second failure is due to the fact that there
are dependencies between parity groups which do not exist in the SR scheme; for instance, disk 4
in Figure 2 belongs to two different “types” of parity groups because it acts as the parity disk for
cluster 0 and as a data disk for cluster 1. The mean time to catastrophic failure in this scheme is
approximately:
MTTF(disk)?
D« (2C — 1) x MTTR(disk)

where the (2C — 1) factor in the denominator reflects the additional exposure to disk failures. The
mean time to catastrophic failure in this case with MTT F(disk) = 300,000 hours, MTT R(disk) =

1 hour, D = 1000 disks, and C = 10 disks per cluster is approximately 540 years rather than 1141

years as in the SR and the NC schemes. However, as long as this is an “acceptable” MTTF of a
system, IB can be an attractive scheme for providing fault tolerance in VOD servers (as will be

illustrated in Sections 5 and sec-compare).

In addition to catastrophic failure, degradation of service can also occur. If the IB system
is running at full capacity, then a disk failure results in degradation of service (however, there
is no scheme that can recover from such failure without degradation of service). Furthermore,
degradation of service will also occur if during a “shift to the right” the system runs into another
failed cluster, operating at full capacity, before it is able to “smooth out” the load created by the
failure (in this case, the system would not be able to “shift to the right” past that failed cluster).
However, we can improve on both of these situations by reserving a small amount of idle capacity,
spread among all the clusters of the system. In that case, the IB system will result in a sufficiently
high degree of availability. For instance, if we reserve 5 disks worth of bandwidth available in the
system, then the mean time to degradation of service is the same as the mean time to degradation

16‘ (

of service in the NC scheme (see Section 3.1) or about 250 million years This is based on an

optimistic assumption that the parity blocks that have to be read are evenly spread over a cluster.)

6 Essentially, in both cases we are assuming that failures are rare, and thus we are reserving a small amount of
available capacity, whether it is disk bandwidth or buffer space, in order to “share” it between all the clusters in the

system, in case of failure.
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On the other hand, the mean time until catastrophic failure is approximately 540 years. Therefore,
we can significantly improve system reliability (i.e, mean time until degradation of service) by
reserving only a very small fraction of the total disk bandwidth for “smoothing out” the additional
load caused by a failure, i.e., it is very likely that there will be a catastrophic failure before the

system runs out of bandwidth for performing a “shift to the right” (as described above).

Lastly, if a failure occurs in the middle of a cycle, then it might not be possible to mask the
failure for the objects scheduled on the failed disk during that cycle, since parity blocks are not
being read concurrently with the data blocks under normal operation. A sophisticated scheduler,
during normal operation, might adapt to the system load by reading parity blocks under lightly
loaded conditions (and thus avoid isolated hiccups); as the load increases, reading parity blocks

can be dropped in favor of supporting more streams.

The “prefetching without parity disk” scheme, described in [17], is essentially the same as the
IB scheme, except that the parity information is spread among all other disks in the system, as
opposed to just the adjacent cluster. It is not clear whether this approach would balance the
additional load due to failure better than the IB scheme, since the IB scheme is able to adjust to
changes in workload smoothly, by shifting the load to the right. Furthermore, “prefetching without
parity disk” [17] has a serious reliability problem. As stated above, the IB scheme improves the
bandwidth efficiency of the system at the cost of reducing the system reliability by approximately
a half, since it can handle (simultaneous) single disk failures in at most half of the clusters in the
system. The “prefetching without parity disk” [17] gives up much more in system reliability since
it will lose some data from the disk subsystem after any two disk failures, i.e., after any two disk

failures, some data will have to be reconstructed from tertiary storage.

4 Non-sequential Schemes

The main advantage of non-sequential schemes is that they exhibit better buffer space utilization
than sequential schemes; however as already mentioned, a major disadvantage is the poor utilization
of the disk bandwidth which is due to the necessity to reserve additional bandwidth for real-time
recovery from failure. This is basically the same problem that is faced by traditional RAID system,
which can suffer from poor performance in degraded modes of operation, as a result of an increase

in workload due to failure. Hence, one approach to addressing this problem would be to use a
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solution similar to the one used in traditional disk subsystems, namely, achieve a smaller increase
in workload under failure (i.e., better degraded mode performance) at the cost of storing more
(than “necessary”) redundant information (and/or possibly sacrificing some of the reliability, as
will become apparent later). One example of a traditional approach is the Clustered RAID scheme,
proposed in [15]. We first describe the main idea behind Clustered RAID and then two variations
on the adaptation of the Clustered RAID framework to VOD servers, one using the Balanced
Incomplete Block Design (BIBD) [12] technique as suggested in [15] and then applied specifically
to VOD servers in [17], and the other using the Segmented Information Dispersal (SID) technique

[6].

The basic idea behind Clustered RAID is to relax the constraint used in traditional RAID
architectures [18], that the parity group size, G, is equal to the cluster size, C — here, “parity
group size” refers to the number of data blocks plus the parity block, and “cluster size” refers to
the number of disks over which the parity group blocks are distributed. One of the motivations
for use of techniques where the parity group size is smaller than the cluster size is a better load
balancing characteristics under disk failure. To deliver video data using the Clustered RAID scheme,
we can use the same approach as in the case of R5 (see Section 2.4), with the notable exception
that we would need to reserve enough bandwidth (in case of failure) on each disk of the cluster to
read only x% bytes of data (as compared to x bytes of data in the case of R5) to reconstruct
the missing x bytes of data. Of course, by choosing values of G which are small relative to C, we
can reduce the amount of bandwidth wasted for reliability purposes (but at the cost of additional
disk space). Several methodologies have been proposed for constructing parity groups such that
the load is distributed uniformly across the disks in case of a failure — BIBD and SID are two

which are described below in the context of VOD servers.

4.1 Improving Bandwidth Requirements through SID

The SID scheme described in [6] uses the Clustered RAID type approach to address the bandwidth
inefficiency problem of a traditional RAID system in the context of VOD servers. We briefly
describe the SID approach below. As in the case of an R5 scheme (see Section 2.4), both real data
and redundant information are stored on each disk. The main feature of the SID scheme is that
it maintains the limited continuous access length (LCAL) property which states that during the
recovery of any k (1 < k < b/u) contiguous interleave units which belong to the data portion of a

missing fragment, no more than [k/q] * u bytes must be read from the available fragments, where
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q is the dispersal factor and u is the size of the interleave unit (in bytes). Thus ¢ is one parameter
which can be used to control the amount of bandwidth wasted for reliability purposes. (This is

analogous to the % parameter of the Clustered RAID.)

The LCAL property that characterizes SID guarantees that during the recovery of any k
1<k< %) contiguous interleave units which belong to the data portion of a missing framge-
ment, no more than [k/q] * u bytes must be read from the fragments on the surviving disks of a
cluster. Another parameter which will aid in determining the effectiveness of the SID scheme is
the redundancy rate ¢, which is the ratio of the amount of redundant data to the total amount of
data!”. Of course, not all values of ¢, C' (the cluster size), and ¢ will maintain the LCAL property.
Hence, part of the difficulty is in choosing proper values and constructing a proper data layout that

will correspond to these values.
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Figure 3: SID organization

We illustrate a special case of the SID organization (namely Constrained SID) through the
example of Figure 3. In this example, C' =5, ¢ = 2, b = 2, and ¢ = % Each disk 7 is divided
into segments S; ;, where 1 < j < g, which are g-interleaved. The interleaving insures that each
block of size r contains equal amounts of (real) data from each segment of the disk. The check
segment of each fragment contains the parity (exclusive or) of ¢ data segments that belong to ¢
other fragments. If a failure occurs, for instance of disk 3, then, e.g., a shaded region, of size r
r

bytes, of that disk can be reconstructed by reading (contiguous) shaded regions, each of size

bytes, of the surviving disks of the cluster. To deliver video data using an SID scheme, we can

1" There are many more parameters of the SID scheme which are given in [6]; however, for ease of presentation, we
will limit our discussion to those that can aid us in presenting a relatively simple version of SID and still allow us to

illustrate the advantages and disadvantages of this approach.
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use the same approach as in the case of R5, which is reading blocks of r bytes (see Section 2.4),
with the notable exception that we would need to reserve enough bandwidth (in case of failure) on
each disk of the cluster to read only g bytes of data (as compared to  bytes of data in the case of
R5) to reconstruct the missing r bytes of data in real time. As already mentioned, the SID scheme
depicted in Figure 3 is a Constrained SID organization. In this case, given a cluster of C disks,
using the LCAL property it can be shown that ¢> +1 < C (where a valid ¢ must first be determined
— see [6] for details). Of course, in the Constrained SID scheme, larger values of ¢ will result in
less storage and bandwidth wasted for reliability purposes. On the other hand, given the above
constraints, larger values of ¢ will also force larger values of C' — this can result in a degradation
in system reliability. The performability comparison between SID and R5 is quantified in Sections
5 and 6.

Note that, by carefully choosing the values of the SID parameters, such as ¢ (or C), it is possible
to construct SID solutions that are equivalent (i.e., degenerate to) other redundancy schemes, such
as R5 [18], interleaved declustering [1, 7] (i-e., a version of full replication), and Clustered RAID
[15] (see [6] for details).

In this paper we will be consider several variations of the Constrained SID scheme. The moti-
vation for considering multiple versions of the SID approach is the fact that the size of the retrieval
unit and the precise scheduling of data retrieval are not specified in [6], and, as will become appar-
ent in Sections 5 and 6, these choices can significantly affect the performance of the VOD system.
Namely, they affect the maximum number of streams that can be active simultaneously, the disk
bandwidth utilization, the buffer space requirements, and the cost per stream. The two variations
of the SID scheme considered in this paper are SIDs and SID;. In the STD; schemes the retrieval
unit is a set of ¢ consecutive tracks. During the recovery process, the LCAL property guarantees
that to reconstruct these g tracks, each surviving disk of the cluster has to read no more than one

track. On the other hand, the STD; scheme uses one track as its retrieval unit. In this case, under

track_size

Jrsector _size sectors for reconstruction of

the degraded mode of operation, each surviving disk reads
each missing track. We should also mention, that the total amount of time needed to read these
sectors for each missing track includes the maximum rotational latency (plus the slowdown and the

speedup of the read/write head of the seek time, as described in Section 2.2) and the time to read

the track_size

gxsector _size sectors (% Tread/Q)-

Under all SID schemes, bandwidth must be reserved to insure that each disk will have sufficient

bandwidth to retrieve the additional data or parity information in order to reconstruct the missing
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data of the failed disk in real time. Specifically, for the SID; variation there will be sufficient
bandwidth to retrieve both the data needed to service all active streams and the data needed for

reconstruction, if the following constraint is satisfied:

SIDg
NSIDs + d < NSIDs
d q = “Yeff
N NSIDs o~ NSIDs q

where N dSID ¢ is the maximum number of streams per disk that can be active under the SID;
scheme. In the SID; scheme, the surviving disks read data blocks for reconstruction of missing
information during the degraded mode of operation, of size less than a single track. The total time

that it takes for a disk to read N, (,15 v tracks and N (‘f Db qata units (used for reconstruction) is:

SID SID Tread
Tcyc = Tseek T+ Nd ok Tyrg + Nd b % [Ttrk + :|

Given above, in order for the system to guarantee that it can retrieve (in real time) the additional

data needed for reconstruction in case of failure, it must also satisfy the following constraint:

B _
NSID,, < bo seek
d — 27—1‘,7‘]6 + Tr;ad

As already mentioned in the R5 scheme reconstruction of 7 consecutive bytes requires every disk to
retrieve r bytes of data or parity information. Therefore, in the case of R5, the following constraint

. NR5
must be satisfied: fo’ < gL

4.2 TImproving Bandwidth Requirements through BIBD

The main difference between BIBD and SID is in what constraints are placed on the construction
of redundant information and on the layout of real and redundant data within a cluster. Of course,
these differences can reflect on the performance of the system, both under normal operation and

under failure.

The BIBD approach specifies a way of constructing s parity groups of size k (i.e., k& disks belong
to a parity group), where every pair of disks occurs in exactly A different parity groups and each
disk occurs in exactly r different parity groups. In addition, the total number of disks is equal to
u. Thus, a BIBD solution satisfies the following two equations ([12]):

rx(k—1) = Ax(u—1)
skk = wuxr (2)
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A “declustered parity based” scheme, utilizing the BIBD approach in a fault tolerant design of a
VOD server is described in [17]. In this scheme, the retrieval unit, per stream, of size b bytes can be
viewed as an interleaved form of r data blocks, each of size b/r bytes and each assigned to a different
parity group. If D; is the failed disk, then for each surviving disk D; in the affected cluster, there
are \ parity groups to which the pair (D;, D;) belongs. The total number of blocks that a disk

BIBD
Nd

has to read for the reconstruction of the retrieval unit is A\. Therefore, if is the maximum

N dBI BD & % additional blocks have

number of active streams on a disk, then (using Eq. (2))
to be read by each surviving disk (or N, fI BD 4 % * b bytes), where % < 1. In the case of the Rb
scheme, the total number of bytes retrieved by each of the surviving disks is NJ® x b. Therefore,
the amount of bandwidth that must be reserved for reconstruction of missing data, in case failure,
under the BIBD scheme is potentially smaller than the amount of bandwidth that would have be
be reserved under the R5 scheme. Given a BIBD-based scheme, where the retrieval unit consists
of r tracks'®, and a scheduling scheme where k, = k; = r, there will be sufficient bandwidth to
retrieve both the data needed to service all active streams and the data needed for reconstruction,
if the following constraint is satisfied:
NBIBD | NBIBD k-1 < NeB}ScBD

-1
— NBIBD  NBIBD U
d = U kw2
B Tseek u—1
= NBIBD < _ S€e. * 3
d — lbo* Tk Twr*r] kE+u-—2 (3)

One main difference between the SID and the BIBD schemes is that BIBD cannot guarantee that
the data blocks retrieved for reconstruction of missing information during the degraded mode are
consecutive. In our model, this difference can affect the bandwidth utilization only if the size of the
block read for reconstruction purposes is less than a track. In that case, there will be an additional
overhead of the rotational time delay (as described in Section 4.1). Due to the similarities between
the SID and the BIBD approaches and to the lack of space, we only analyze the SID scheme in

Sections 5 and 6.

'8 This is unrelated to the r parameter given above.
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5 Analysis

In this section we analyze the SR, SG, IB, NC, SIDy, SIDy, and R5 schemes based on: (1) reliability
considerations, including their susceptibility to catastrophic failure and degradation of service, (2)
maximum number of simultaneous display streams they can support, and (3) costs associated with
storing redundant information. The penalties reflected in the above given metrics can fall into one

of three categories:

disk storage the amount of disk storage that must be dedicated to redundancy, e.g., parity

information, which can not be used to store real data
bandwidth ~ the amount of bandwidth that must be dedicated to redundancy, e.g., for retriev-

ing parity, which can not be used for retrieving real data
buffer space the amount of memory needed to support a redundancy scheme, e.g., for storing

some portion of a parity group until it can be delivered to display stations

In general, these penalties are not independent of each other. For instance, in certain parity
placement schemes (see Section 2.4), a penalty in storage is accompanied by a penalty in bandwidth.
Or, as will become evident later in Section 6, it is often possible to tradeoff disk storage cost for
buffering cost, and vice versa. (In addition to the quantitative metrics, one should also consider
more qualitative factors, such as: (a) complexity of scheduling retrieval and delivery of objects
during normal and degraded modes of operation, (b) complexity of data layout, and (c) complexity

of the rebuild process. However, due to lack of space we do not discuss these any further.)

Disk space overhead

Let SP denote the amount of additional disk storage space required by scheme p, where p = SR,
SG, NC, IB, SID,, or SID;. Then:

gSR _ gSG _ gNC _ gIB _ grs _ D*S (4)
C
D
SSIDb = = SSIDS = —; o (5)

where S is the disk capacity (in megabytes), C is the parity group size, ¢ the dispersal factor of

the layout, and D is total number of disks in the system.
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Disk bandwidth overhead
The amount of additional disk bandwidth, BWP, required by scheme p is:

BWSE = BWSG = pwve = x4 (6)
C
BW'B = Kipxd (7)
Dxd
R5 __
BWR — = (8)
D
BWSID» — pBwSIDs — %i (9)

where d is the bandwidth of a single disk, C' is the parity group size, and K;p * d is the disk
bandwidth that is reserved in the IB scheme to insure a reasonable mean time to degradation of
service (MTTDS) (see Section 3.2).

Reliability
The reliability of the various schemes can be compared using the following equations. The suscep-
tibility to catastrophic failure, i.e., M TTFg| ¢ (for each scheme p) as a function of the parity group

size, C, and the number of disks in the system, D, is:

MTTF (disk)?
MTTFSE, = MTTFSG, = MTTFYCG ~ 10
blc blc DIC™ D« (C — 1) * MTTR(disk) (10)
MTTF (disk)?
MTTFLEE, =~ 11
blc D * (2C — 1) * MTTR(disk) (11)
SID SID,
MTTFp ;" = MTTFj; (12)
TTF(disk)?
~ M (disk) (13)

W q* (1+ q) * MTTR(disk)
The mean time to degradation of service for the SR and the SG schemes is the same as their mean
time to catastrophic failure. The situation is different for the NC, IB and the SID schemes. The

9 or in the NC scheme occurs due to lack of buffer

degradation of service in the SID variations!
space (i.e., when the (Ky¢ + 1)st failure results in a need for more buffer space and the buffer pool
is empty, where K¢ is the number of “buffer nodes” in the system). The degradation of service
in the IB scheme occurs when there is a lack of available bandwidth capacity (in the right places)

to perform the shift. Hence:
MTTDSN¢ = MTTDS'™ = MTTDSS!Pe
MTTF (disk)*
Dx(D—1) *--- x (D—K+1) x MTTR(disk) &

~

(14)

'9This is a slight generalization of the SID approach described in [6]; sharing of a buffer pool between clusters was

not considered in [6].
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H Schemes ‘ k., ‘ ks H

SR Cc-1|C-1
NC 1 1
IB c-1|C-1
R5 1 1
SID; q q
SID, 1 1

Table 1: Characterization of schemes.

where a = s,b and the assumptions are that in the case of the NC scheme and in all the SID
variations, there is sufficient buffer space to mask K = Ky¢ failures, whereas in the case of the
IB scheme, there is K = K;p disks worth of bandwidth capacity reserved in the system?’ (see
Sections 3.1 and 3.2 for details). (In the remainder of the paper, we will use the notation Kp for
the number of disk failures that scheme P will be able to mask.) Note that, given the same amount
of redundant information and the same total number of disks in the NC, IB, and SID schemes, the
SID scheme exhibits poorer reliability characteristics. This is due to the dependence between the
cluster size and the amount of redundant information in a SID-based scheme (see constraints given
in Section 4.1), which forces the system into using larger (and fewer) clusters, and thus results in
a lower MTTF.

Number of Simultaneously Supported Streams
The number of simultaneously supported streams, N, was given in Eq. (1). Thus, the mazimum

number of simultaneously supported streams, NP, for each scheme p is (refer to Table 1 for details):

N = Lbo *BTtrk - Tirk :s(eg“_ 1)] * D% (15)

N = Lbo *BTtrk N T;;zk] *ch : (16)
r 1

S e an

N = Lbo *BTtrk - Tirk :s(eg“_ 1)] *(D=Kip) (18)

20There is an additional constraint, in the case of the IB scheme (which is not considered in this computation);
namely, the reserved capacity has to be in the “right” places, since more than two failures in a single stretch of

clusters with no available capacity results in degradation of service.
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NSIDs — [ B Tseek ]*D* [—q ] (19)
bo * Tiri; Tirk * 4 g+1

NR5 — [ B B Tseek:| [2] (20)
bo * Tork Tk 1 12

B _ Tseek
NSIDb — bo * D 21
2rigk + Dand 2y

Additional Buffer Space

At this point we can compute the buffer space requirements?!, BFP, based on the maximum number

of streams supported by each scheme, p. The number of buffers necessary per stream per cycle in

the SR scheme is 2C'; hence:

Cc-1
C

B
BFSR=2C « B [ Tseck ] «D (22)

bo * Tyrk a Tirk * (C_l)
The number of buffers necessary per each set of C — 1 streams in each cycle of the SG scheme is

(C+1)+(C—1)+(C—2)+---+3+2 =L hence;

C(C+1) B Tsock c-1 1
BFSGzi B [ _ Tsee :| D
2 * * bO*Ttrk Ttrk * C * c-1

(23)

The number of buffers necessary per stream per cycle in an NC scheme under normal operation is
simply 2; the number of buffers necessary per stream per cycle in an NC scheme under failure, is
the same as in the SG scheme, except that the NC scheme only provides enough buffer space for

K¢ (one per cluster) failures; hence:

B -1 BFSG
BFNC =24 B« [ —T“e’“] N it l(

K 24
bo*Terk  Tirk ¢ D%)/C’>'< NC] @

The number of buffers necessary per stream per cycle in the IB scheme is the same as in the case of
the SR scheme, except that no buffer space needs to be reserved for storing parity data. Therefore
the number of buffers necessary per each steam is 2(C' — 1), and hence:

B _ Tseek
bo * Tyrk Ttrk*(c_l)

BF'P=2(C —1) % B x ]*(D—KIB) (25)

The buffer space requirements for the R5 scheme are (where we provide sufficient buffer space to

mask no more than Kpgs, in order to make a fair comparison with other schemes):

BF® = B« NB«[2+D+(C—1)* Kgs) (26)

21For ease of exposition, in this section we assume double buffering in most cases; of course, this can be improved

upon in an actual implementaion.
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Finally, the buffer space requirements for the SID-based schemes can be computed as follows:

BFSIDS — B« q2 * (2 * D +KSIDS * (q_l_ 1) % B o Tseek (27)
qg+1 bo * Tyrk  Tirk * @
B
2 —T
BFS™® = Ba b " 94D+ Kerp, * (q+1)) (28)

274y, + q

Cost Per Stream

Since it is not immediately clear how to compare savings in I/O bandwidth (when sequential-type
schemes are used) with savings in buffer space (when using non-sequential-type schemes are used),
one approach is to assess this tradeoff through cost considerations. Thus, as already mentioned,
a meaningful performance measure is $§/stream, i.e., one can compare alternative fault tolerance
schemes by considering: (a) the overall cost of the system based on system requirements, e.g.,
in terms of the cost of disks plus main memory, which are dictated by I/O bandwidth, buffer
space, and storage for fault tolerance needs, and (b) the maximum number of streams that can be

simultaneously supported by the corresponding VOD architecture.

Therefore, given that cost is a constraint, we would like to study how the different schemes affect
the cost per stream metric. As we improve the disk storage efficiency (by increasing the parity group
size) and hence the cost of the disk subsystem, we increase the buffering cost. However, additional
memory space and larger clusters also allow us to increase the maximum number of streams that
we can support simultaneously. As an example use of our analysis, consider the problem of sizing
and selecting data layout and scheduling schemes for a system with a fixed working set size, W,
which is the amount of real data that we would like to store on the disk-subsystem. In the following
equations, the cost per stream is derived for the SR, SG, NC, IB, R5, SID;, and SID; schemes,
where CostP, for each scheme p is defined as the cost of the buffer space plus the cost of the disk
storage subsystem which need to be provided in order to support a fixed working set W and the

fault tolerance scheme p.

CostSE ¢ 5
W:Cb*z*C*B—I_Cd*C_l*I: B _ Tseek (29)
boxTer Ter*(C—1)
CostS¢ Cx(C+1) ¢ 5
Cost™ . ,C*CHY) . (0, * (30)
NSG 2x(C—1) Cc-1 W
T Tirk
CostNC BxKncsCx(C+1 5
W:Cb x 2B + Ne D(*(C’—l)) + Cd * B Tseek c-1 (31)
2 % (C — 1) * -z I:bo*'rt'rk - Tirk ] * C
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6 Comparison of Schemes

In this section we compare the different schemes using two metrics: the buffering requirements and
the cost per stream. The motivation for this comparison is to illustrate the issues and tradeoffs
associated with fault tolerant design of VOD servers, rather than to determine the “best” approach.
It is worth noting (as will become apparent in the figures), that different schemes have their
optimum operating points at different architectural configurations; thus it is not the case that one
fault tolerance scheme is absolutely better than another, but rather that one must understand the
system requirements and constraints (e.g., minimum number of simultaneously supported streams)

and then choose a fault tolerance scheme accordingly.

Given that the probability of Kp failures is sufficiently low (i.e., we achieve an “acceptable” level
of system reliability), in the remainder of this section we will fix this parameter and concentrate
mostly on the cost/performance comparison. We will consider a video database with a fixed amount
of “real” data, W?%2. The system parameters used in the comparisons are described in Table 2. The
total number of disks is maintained at the minimum required to hold the video collection and the
parity information. Before discussing the results presented in this section, we would like to note the
difference between a parity group size and a cluster group size, as used in this section. Here, the
parity group size refers to the number of real data blocks in a parity group (i.e., not including the
parity block). Note that, for the SID variations discussed here, the parity group size refers to the
dispersal factor ¢ where the constraint on the cluster size must be maintained, i.e., Csrp, = ¢ +1,

for a = s,b. Clearly, schemes with the same parity group size have the same amount of redundant

22Gince the amount of “real” data is kept constant, the number of disks in the storage system depends on the

particular fault tolerance scheme being used, i.e., D is a function of W, C, and q.
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H Parameter ‘ Value H

b, 3.5 Mb/sec
B 0.05 MB
Tseek 24 ms

Tirk 12ms

Tread 8.3ms

Kp 5 failures

1 sector 100 blocks
Size of Real Data W | 1000GB
Disk Capacity S 1000MB
Disk Cost Cy $0.3 per MB
Memory Cost Cj $30 per MB
MTTF(disk) 300,000 hours
MTTR(disk) 1 hour

Table 2: System parameters.
information.

Figure 4 illustrates the buffering requirements for the SID-based schemes as a function of the
parity group size. Clearly, the SID; scheme needs more buffer space, since in that scheme g tracks
are retrieved per stream per cycle, as opposed to only a single track per stream per cycle as in the
case of the SIDj; scheme??. Furthermore, the buffer space needed for the SID, scheme increases
as the parity group size increases. This is due to an increase in the size of the retrieval unit of each
stream. On the other hand, as can be seen from Figure 4, the memory requirements of the SID,

scheme change at a slower rate, as a function of the parity group size.

Figure 5 depicts the cost per stream of the SID-based schemes as a function of the parity group
size. The cost per stream, of course, is a function of the the total number of streams that can
be supported simultaneously. Note that, SID; has relatively large buffer space requirements (see
Figure 4). However, its performance, as measured in terms of cost per stream, is better than that
of SIDy, which exhibited lower buffer space requirements. This is due to its ability to support a

larger number of streams simultaneously, since it reads whole tracks at a time and is thus more

28 As already mentioned, for the experiments with SID, we tried different retrieval unit sizes, since this was not

track_size

g*sector_size sectors

specified in [6]. For example, in SID;, under the degraded mode of operation, each disk reads

for reconstruction of each missing track.
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Figure 4: Memory requirements of SID based-schemes.

efficient at utilizing disk bandwidth than STDy. This illustrates the merits of considering a “proper”

performance metric, namely, in this case, $/stream.

Next, we discuss results for the two sequential schemes, namely NC and IB, using the same
metrics. Figure 6 illustrates the buffering requirements of NC as a function of the parity group
size. As the parity group size increases, the buffering requirements of NC increase very slowly
(this increase is due to the increase in the size of clusters which consequently results in an increase
in the amount of buffer space that must be allocated to support Ky clusters operating under
failure). From Figure 6, we observe that the buffering requirements of the IB scheme are greater
than those of the SID; scheme. This is due to the fact that IB can support a larger number of

streams simultaneously than SID;.

Figure 7 illustrates the cost per stream curves as a function of the parity group size for sequential
schemes (NC and IB) as well as non-sequential schemes (SIDg, SIDy, and RAID5). For a small
parity group size, the IB scheme has the best performance as measured in terms of cost per stream
(e.g., $43 at the parity group size of 1)24. SID, reaches its minimum cost per stream at a parity
group size of 3 which then increases slowly as the parity group size continues to grow. Note also,

that NC and SID; perform similarly at a parity group size of 3. However, as was emphasized

2 Essentially this is the mirroring case, where the second copy can be used to serve more requests. Furthermore,
since disk capacity is growing more rapidly than bandwidth capacity, full replication schemes are becoming more cost

effective.
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Figure 5: Cost per stream for SID-based schemes.

earlier, in the case of SID-based schemes, larger parity group sizes result in larger cluster sizes
(and fewer clusters) and consequently, this results in a lower MTTF. Therefore, when choosing
among schemes with approximately the same cost per stream, the scheme that achieves that cost

25 3

at a higher reliability (e.g., this can be “approximated” here by the parity group size)*° is more

desirable.

In what follows, we evaluate the various schemes under different changes in technology as
reflected in memory and disk costs. First, we consider a reduction in the disk cost from $0.3 per
MB to $0.1 per MB while keeping the rest of the parameters fixed as listed in Table 2. Figure 9

displays the cost per stream curves using the reduced disk cost.

The cost per sream for the NC decreases at a low rate, and when the parity group size reaches
7, the cost per stream of NC reaches the value of $18.5. Hence a 66% reduction in the disk cost
results in a = 62% reduction in the cost per stream. Note that, in Figure 9 for parity group
size larger than 3, the NC scheme has a lower cost per stream than IB. The decrease in the

difference between cost per stream of IB and NC, as compared to Figure 7, is due to the fact that

ZBasically, here we are using the parity group size as an “approximate” measure of reliability. One thing missing
from this evaluation is the consideration of the rebuild process, i.e., it is possible that a scheme using a larger parity
group size is able to rebuild the failed disk quicker, if it is also using a significantly larger cluster size (as may be
the case for the SID schemes) — in this case, it is not immediately obvious (without performing reliability analysis)
which of the schemes would have a longer MTTF. However, the system’s behavior in the rebuild mode is outside the

scope of this paper.
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Figure 6: Memory requirements.

the main advantage of IB is its efficient bandwidth utilization — as the disk cost decreases, efficient
bandwidth utilization becomes less important to the overall cost per stream. Furthermore, it can
be shown, using Eqgs. (32) and (33), that the reduction in disk cost has greater effect on the NC and
the SID-based schemes, than on the IB scheme. Also note that (in Figure 10), with the reduced
disk cost, NC performs better than SID; for small parity group sizes (e.g., 2), in constrast to the
results in Figure 8. Thus, it is not the case that one scheme is absolutely better than another, but
rather that one must understand the tradeoffs as well as the system’s requirements and constraints

and then choose a fault tolerance scheme accordingly.

Next we consider a reduction in memory cost from $30 per MB to $10 per MB while keeping
the rest of the parameters fixed as listed in Table 2. Figure 11 displays the cost per stream curves

using the reduced memory cost.

This reduction in memory cost does not have as great of an effect on the cost per stream of the
SIDy and the NC schemes (up to 5%), as it does on the cost per stream of the IB and the SID;,
schemes (up to 25%). Note that, with the new reduced memory cost system (refer to Figure 11),
the rate at which the cost per stream of the IB scheme changes, as a function of the parity group
size, is small, as compared to the original system and the reduced disk cost system (see Figures 8
and 10, respectively). This is due to the fact that the inefficiencies of the IB approach (as applied
to the SR scheme) are mainly due to large buffer space requirements (as opposed to inefficient use

of disk bandwidth, as is the case for other schemes).
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Figure 7: Cost per stream.

7 Conclusions

In summary, fault tolerance issues in multimedia storage systems are complicated by the necessity
to recover from failure in real time. In this paper, we discussed several parity schemes for provid-
ing reliability and availability in a Video-on-Demand server, and we evaluated them using several
performance metrics which included: storage overhead, bandwidth utilization, buffer space require-
ments, MTTF, MTTDS, and cost per stream. We studied the cost per stream characteristics of
several sequential and non-sequential schemes as a function of the parity group size, which affects
the reliability characteristics of the system. We have shown that improvements in reliability, which
depend on the amount of redundant information stored and on how this information is placed on
disks and retrieved, must be balanced against degradation in performance, disk storage overhead,
loss of bandwidth, and increase in cost. In conclusion, we would like to impress upon the reader
that the main point of this paper is the exposition of tradeoffs and issues associated with designing
fault tolerant VOD servers rather than a description of specific schemes. Hence, it is not the case
that one fault tolerance scheme is absolutely better than another fault tolerance scheme, but rather
that one must understand the tradeoffs presented in this work as well as one’s system constraints

and requirements and then choose a fault tolerance scheme accordingly.
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