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Abstract—Peer-to-peer (P2P) systems rely on peers’ cooperation to provide a more robust and scalable service as compared to the

traditional client-server architecture. However, the peers might be selfish in nature—they would like to receive services from others, but

would not like to contribute their own resources by default. To conquer this problem, proper incentive schemes are needed so as to
stimulate the peers’ contributions. In particular, in P2P video-on-demand (VoD) systems, peers need to distributively cache the proper

videos so as to mutually upload and help each other to acquire the required data. Content providers of P2P-VoD services want to
incentivize peers to do so and alleviate the workload of the content server. In this paper, we design a practical mechanism to

incentivize distributed caching in such systems, under which the peers are rewarded based on the popularity of the video they cache.
We characterize the impact of this incentive scheme on peers’ caching behaviors. In particular, we formulate an optimization

framework to decide the optimal reward price for each video so as to keep enough replicas and minimize the content provider’s
operational cost. We first derive close form solutions in an asymptotic system, and then extend our results to be adaptive to various

practical issues. Via extensive simulations, we validate the effectiveness and efficiency of our incentive scheme.

Index Terms—P2P-VoD, incentive, pricing, mean field, optimization
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1 INTRODUCTION

IN the recent years, we have witnessed the success of
adopting peer-to-peer (P2P) technologies into video-on-

demand (VoD) systems. There are number of large-scale
and commercial P2P-VoD systems like PPLive and
PPStream. In such systems, peers cache video data in their
local storage and deliver them to one another when they
have available upload bandwidth. Compared with tradi-
tional VoD deployments, P2P-VoD systems can be more
scalable and fault tolerant. In the meanwhile, the Internet
service providers (ISPs) usually use the volume-based
charging scheme. Therefore, by utilizing the distributed
resources of the peers, the content provider can greatly
reduce its operational cost due to the reduction of upload
requirement at the content servers.

However, peers in a P2P-VoD system might be selfish in
nature and would not be willing to contribute their
resources (e.g., upload bandwidth, local storage space) by
default. Hence, designing an effective incentive scheme is
critical. Unlike traditional P2P file sharing applications in
which many incentive schemes have been proposed, very
limited work has been focusing on the P2P-VoD applica-
tions. Designing a proper incentive scheme is challenging

due to the following reasons. First, in P2P-VoDs, sequential
fetching or downloading is needed, in particular, when a
peer starts watching a new video, or when the download
rate is not sufficiently enough. This differs from the rarest-
first strategy so that traditional BitTorrent protocol cannot
directly apply to VoD. Second, the P2P-VoD system is large
scale and stochastic in nature. It is difficult to predict, or
even describe the peers’ requests and resources at a
particular time. Third, unlike the P2P file sharing system
where availability of replica is enough (provided that peers
are patient enough to wait a long time for downloading),
P2P-VoDs need to keep enough replicas so as to guarantee
the download rate to satisfy peers’ viewing requirements.
Last but not the least, peers in P2P-VoDs are heterogeneous,
for example, they may have very different available
bandwidth or storage to contribute, so they have various
responses to a particular incentive scheme. Partially due to
these difficulties, current commercial systems do not
involve any incentives, but rather, they simply force the
peers to contribute, for example, in PPStream, peers need to
reserve a 2-GB storage space when installing the software.
In this paper, we explore the design of a “reward-based
incentive scheme”. We believe such mechanism can greatly
improve the fairness, robustness, and user friendliness.

Each peer in a P2P-VoD system needs contribute their
1) local storage space to distributively cache video data, and
2) upload bandwidth for uploading data to other peers.
Both aspects are equally important because a peer cannot
contribute if it fails to do either of them. Our previous work
[22] focused on incentivizing the upload bandwidth. In this
paper, we focus on stimulating peers to cache the needed
video data. We propose a reward-based incentive scheme
for distributed caching, where the content provider decides
the reward price1 of each video, and peers decide what
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videos to cache in a distributed manner. Peers are rewarded
according to the preset price if they cache a particular video.
Although most systems are free for ordinary service, our
reward scheme is practical as the reward can be in credits or
service fee rebate for premium services (e.g., HD channels)
for which commercial systems do charge users.

We apply a mean field model [2], [3] to characterize the
steady state of the caches in a large-scale P2P-VoD system.
By transforming a large-scale stochastic system into a
limiting deterministic one, the mean field technique enables
us to represent the system state by the fraction of peers in
each cache state. Based on this, we formulate a reward
pricing problem using an optimization framework and
solve the optimal reward prices that minimize the content
provider’s operational cost. Extended from our previous
work [23], we consider more general system settings and
practical issues. Our contributions are:

. We develop a stochastic model to capture the peers’
caching behaviors, and use the mean field technique
to characterize the system in a limited steady state.

. We formulate an optimal pricing problem of the
content provider and derive the optimal prices. Our
scheme keeps enough replicas for each video and
minimizes the content provider’s operational cost.

. We extend our protocol design to be adaptive to
general and practical system environments.

. We validate the effectiveness of our incentive
scheme by extensive simulations.

We organized this paper as follows: In Section 2, we
develop a mathematical model to characterize the system’s
cache state, and present an optimization framework for
the pricing scheme. In Section 3, we analyze the pricing
schemes in a practical asymptotic case, where we give
closed-form solutions for the optimal pricing schemes. We
also analyze the nonasymptotic case in Section 4. We further
generalize our model and the corresponding incentive
schemes to adapt various practical issues in Section 5, and
perform extensive simulations to evaluate our pricing
schemes in Section 6. Section 7 and 8 state related work
and conclusions.

2 MODEL

2.1 Preliminaries

We consider fixed number of peers and videos in the
system. In a realistic system, the number of videos can be
large; however, the incentive decision is often made only
upon the popularity of the videos. We categorize the videos
into M classes, each containing videos of similar popularity.
We denote Vi as a typical video of class i.

We first characterize the system’s state in caching each
video. A straightforward way is using a stochastic model
where the system’s state is determined by all peers’ cache
states. However, this can be computationally expensive, in
particular, when the number of peers is large, the system’s
state space becomes intractable. To overcome this diffi-
culty, we model the peers using a mean field approach,
where we are more interested in the fractions of peers in
certain states in steady state, rather than the exact number
of peers in the system. We state the rationale of using the

mean field limit in the supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2013.94.

Users do not always stay in the system, and our model
only focuses on those currently online peers. Given any
time, some peers have just rejoined the system after
disconnecting for some period. We argue these peers need
to refresh their local storage with a certain probability
because the contents they have cached are stale. To validate
this argument, we note that in real systems, some peers
mainly watch TV series and they frequently access the VoD
service (e.g., on per day basis). A new episode is the most
popular on its publishing date, and the popularity drama-
tically decreases thereafter. Hence, when they rejoin the
system with the episode they cached yesterday, they have a
lower chance to contribute. Some other peers mainly watch
movies and on average, they have a long period being
disconnected before rejoining the system (e.g., one or several
weeks). Movie popularity changes smoothly compared to
TV series, but it often becomes unpopular one week after
publishing, thereby decreasing the chance for the rejoining
peers to contribute. To summarize, a rejoining peer has a
high probability to refresh its storage. We have not found
papers with relevant measurement results, but we consulted
engineers from a VoD company and they validated this fact.

Denote p0 as the probability that a peer refreshes its local
storage with an empty cache space after finishing watching
a video. This happens when this peer rejoins the system
with previously stale contents. This probability is not small
because 1) the rejoining probability is not negligible, and
2) the contents in the rejoining peers’ cache are quite likely
to be stale. Otherwise (i.e., the peer has been in the system,
or it rejoins the system with useful cache content), we
denote pj as the probability that the chosen video is of class
j (or Vj), which can be considered as the popularity of Vj. All
these transiting probabilities satisfy

PM
j¼0 pj ¼ 1.

In our scheme, the content provider provides an external
reward of vj for each video of Vj cached. We call vj the price
of Vj and define the price vector as vv ¼ ðv1; v2; . . . ; vMÞ. Our
core design problem is to decide the optimal prices for
various videos in the view of content provider. For any
fixed price vector, without loss of generality, we index the
videos in a nonincreasing order of prices, i.e., v1 $ % % % $ vM .
Later, we will explore its relationship with the order of
video popularity.

Each peer decides whether to cache the video according
to the price of the video. To characterize the peers’
sensitivity on prices, we classify all peers into M þ 1
categories. Peers of type 0 are not willing to cache any
video, whereas peers of type m are only willing to cache the
m highest-priced videos. This implies that peers of type
0 care much on their storage costs and they do not want to
cache any video, while peers of type M are the most
insensitive ones and are willing to cache every video. In
what follows, we characterize the caching behaviors of the
peers of various types, and then explore the impact of
the pricing scheme on the distribution of video replicas in
the whole system.

2.2 Peers’ Caching Behaviors

We consider a typical peer of type m that has C units of
storage, i.e., it can cache up to C videos in its local storage.
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We define the peer’s state at any time as the videos that it
has cached in its local storage. Each storage unit can be
empty or holding any video of any class. Notice that a peer
might cache multiple videos from the same class that have
similar popularity. In real systems, we are only interested in
the content that a peer caches, but not the physical caching
sequences or the specific storage units. For example, if a
peer caches two videos, one of V1 and another of V2, its state
should be independent of which video is cached first and
which storage units it uses to cache both videos. Formerly,
we use an mþ 1 dimensional vector ss ¼ ðs0; s1; . . . ; smÞ to
represent the cache state of a peer of type m. The state ss is
defined upon type m, but we omit the superscript m to
make the notation neat. The first element s0 denotes the
number of empty units. For any j > 0, sj denotes the
number of videos of Vj that this peer caches. For example, if
a type 3 peer has six storage units and caches one video of
V1 and two videos of V3, then this peer still has three
available caching units and its cache state is ð3; 1; 0; 2Þ. The
state space of a type m peer is Sm ¼ fss :

Pm
j¼0 sj ¼ C;

sj $ 0g. We let ss ¼ ðs0; . . . ; smÞ ¼
Pm

j¼0 sjeej, where eej is a
vector with the jth element being 1 and all other elements
being 0. We define tðssÞ ¼ arg maxifsi : si > 0g as the largest
class index of the videos cached in state s. We define a
deletion operation ddðssÞ on state ss as

ddðssÞ ¼ ee0 if s0 > 0;
eetðsÞ otherwise:

!
ð1Þ

The deletion operation maps a cache state to the video that
will be replaced, if necessary. If the peer has available
storage, then the operation maps to the empty slots e0;
otherwise, it maps to the largest class index in s.

Based on the above notation, we illustrate the cache state
transition diagram in Fig. 1. Given a current state ss, three
types of transition can happen to a peer. First, with
probability p0, the peer refreshes its local storage and
transits to state Cee0, where all its C units of storage become
empty. Second, with probability Pm ¼

PM
s¼mþ1 ps, which is

the aggregate probability that the peer watches any video
from the set fVs : s > mg, the cache state remains the same,
since the peer watches some video that it is not going to
cache. Third, with the probability pj for j ' m, the peer
watches some video of Vj and wants to cache it. Depending
on whether the current cache space is full, the deletion
operation might be needed to replace the least-priced video
in the cache.

Fig. 2 illustrates the complete cache state transition
diagram for a peer of type 2 with capacity C ¼ 2.

In closing, we mention that this basic model can be
extended to more general cases (e.g., intelligent peers)
which we will show in later sections.

2.3 Cache State Distribution of Peers of Type m
In this section, we use the mean field model to approximate
the fraction of peers in each state. We denote qmðssÞ as the

fraction of type m peers that are in state s in a steady state.
The existence and uniqueness of such a stationary distribu-
tion is guaranteed since the Markov chain is time homo-
geneous, irreducible, and that all states are positive
recurrent [12].

We use the global balance equations [12] to derive the
steady state distribution of peers in each cache state. The
global balance equation requires that rate at which peers
arrive at a state equals the rate the peers depart from this
state. We distinguish three scenarios where a peer’s local
storage is empty, partially occupied and full, and derive
qmðssÞ separately for the three cases. For the state ss ¼ Cee0

that represents the empty storage, we have

qmðCee0Þ
Xm

j¼1

pj ¼ ð1( qmðCee0ÞÞp0: ð2Þ

The left side describes the rate at which the peers depart
from state Cee0, which equals the fraction of peers in state
qmðCee0Þ, multiplied by the probability that they watch and
cache some video, i.e.,

Pm
j¼1 pj. The right side describes the

rate at which peers arrive into state Cee0, which equals
the fraction of peers not in state Cee0, multiplied by the
refreshing probability p0. From (2), we can solve qmðCee0Þ as

qmðCee0Þ ¼
p0Pm
j¼0 pj

¼ p0

1( Pm
: ð3Þ

Similarly, for any state ss with s0 > 0, i.e., a partially
occupied cache, we have the following equation:

qmðssÞ
Xm

j¼0

pj ¼
X

j2JðssÞ
qmðssþ ee0 ( eejÞpj; ð4Þ

where JðssÞ ¼ fj : j > 0; sj > 0g, i.e., the set of class indices
for which at least one video is cached at state ss. The right
side describes possible transitions to ss happen from any
cache state ssþ ee0 ( eej that has one less video of Vj than ss,
with the probability pj that the peer starts to cache a video
of Vj. Starting from the result of (3) serving as the right side
of (4), we can progressively and recursively solve the above
equation and obtain

qmðssÞ ¼
jssj!p0

Qm
j¼1 p

sj
j

ð1( PmÞjssjþ1Qm
j¼1 ssj!

; 8ss; s0 > 0; ð5Þ

where jssj ¼
Pm

j¼1 sj denotes the total number of replicas
cached by this peer.2
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Fig. 1. Transition diagram.

Fig. 2. An example of cache state transitions.

2. The definition of jssj excludes s0 from the summation since s0 denotes
the number of empty units.



Lastly, for the state ss with s0 ¼ 0, i.e., a full storage, the
corresponding balancing equation is

qmðssÞ
XtðssÞ(1

j¼0

pj ¼
X

k2KðssÞ

X

j2JðssÞ
qmðssþ eek ( eejÞpj; ð6Þ

where KðssÞ ¼ fk : k ¼ 0 or tðssÞ < k ' mg. To calculate the
above qmðssÞ, we sort the states fss : s0 ¼ 0g in an increasing
order of the sequence ðs1s2 . . . smÞ. For the example in Fig. 2,
the states are sorted as ð0; 0; 2Þ; ð0; 1; 1Þ; ð0; 2; 0Þ. Then we can
solve (6) for the states according to the sorted order so that
the right-hand side quantities will already be available.

Let N be the total number of peers and Nm be the
number of peers of type m. Define rmðjÞ as the per peer
average number of videos of Vj cached by type m peers:

rmðjÞ ¼
X

8ss2Sm

sjqmðssÞ: ð7Þ

2.4 Cache State of the System

Based on the cache state distribution fqmðssÞ : ss 2 Smg, we
now derive the cache state of the entire system. This
depends on the number of peers of each type, which is
further determined by the prices of the videos. For example,
if vM is large, then more peers will be of type M; if v1 is
small, then more peers will be of type 0. The distribution of
peer types also depends on how sensitive the peers are
toward prices. We start with a simplified linear sensitivity
model, which is generalized in later sections, to characterize
the impact of prices on the distribution of peer types. This
linear model assumes that the fraction of peers willing to
cache any video is proportional to the price of that video. In
particular, define V as the lowest price for which all peers
are willing to cache the video. By proposing price vj, a
fraction minfvj=V ; 1g of the peers are willing to cache Vj.

Naturally, the content provider can set up any non-
negative price for videos; however, setting the price higher
than V cannot be more beneficial than setting at V . Hence,
we focus on the design space vj 2 ½0; V *; 8j. Under our
linear model, by defining v0 ¼ V and vMþ1 ¼ 0, we can
express the number of type m peers in the system as

Nm ¼
vm ( vmþ1

V
N: ð8Þ

In particular, N0 ¼ ð1( v1=V ÞN denotes the number of
peers unwilling to cache any video, and NM ¼ vMN=V
denotes those willing to cache all videos. Hence, the
number of videos of Vj in the system is

RjðvvÞ ¼
XM

m¼0

NmrmðjÞ ¼
N

V

XM

m¼0

ðvm ( vmþ1ÞrmðjÞ

¼ N
V

XM

m¼1

rmðjÞ ( rm(1ðjÞ½ *vm:
ð9Þ

For the ease of notation, we express RjðvvÞ as

RjðvvÞ ¼
XM

m¼1

lmjvm; ð10Þ

where lmj ¼ N
V ðrmðjÞ ( rm(1ðjÞÞ.

The above equation shows that, under the linear model,
the number of videos of any class Vj is a linear combination
of all the prices. Hence, given a set of prices, we can
characterize the number of video replicas of each class Vj in
the system. Our design space is to strategically set the prices
to achieve certain objectives for the system.

2.5 Design Objectives of the Pricing Scheme

The content provider proposes the incentive scheme to
reduce its operational cost. We define two kinds of pricing
strategies that aim at different objectives.

Conservative pricing problem (CPP): A major part of the
content provider’s operational cost is the upload cost for
delivering data to the peers that cannot be satisfied by other
peers’ contribution, due to the lack of video replicas in the
system. Therefore, the content provider would like to set the
prices such that the number of cached replicas can satisfy all
peers’ demand. In this paper, we assume that we know the
desired number of replicas in this system, which has been
addressed by the previous work [21]. We denote R̂j as the
desired number of replicas for Vj. The conservative pricing
problem tries to find a price vector vv ¼ ðv1; . . . ; vMÞ that
satisfies the following constraints:

R̂j ¼ RjðvvÞ and 0 ' vj ' V ; 8j ¼ 1; . . . ;M: ð11Þ

In other words, the content provider wants to find the
prices for the videos such that the supplied number of video
replicas would be the exact desired amount. The content
provider is conservative since it ensures no upload con-
sumption at the content server (provided that the peers’
uplink bandwidth is enough), despite that the prices for
some videos might be high.

Strategic pricing problem (SPP): The operational cost
comes not only from the upload cost of the servers, but
also from the reward payable to all the peers that cache
videos. Therefore, the content provider might not want to
guarantee the desired amount of cached videos in peers’
storage. In reality, it is sometimes the best interest for the
content provider to set lower prices so as to reduce the
reward cost and balance the overall utility. Formally, we
denote CðvvÞ as the content provider’s operational cost,
which consists of an upload cost CuðvvÞ as well as the reward
cost CpðvvÞ it pays to all peers.

If Rj < R̂j, the replicas of Vj are not enough in the
system, then the server incurs an upload cost of Cu that is
proportional to the deficit number of replicas, defined by
CuðvvÞ ¼ cu

PM
j¼1ðR̂j (RjðvvÞÞþ, where cu is the unit cost, and

ðxÞþ ¼ maxð0; xÞ. The cost of reward Cp is the total rewards
that the content provider pays to all peers, defined by
CpðvvÞ ¼

PM
j¼1 vjRjðvvÞ. Thus, the operational cost of the

content provider CðvÞ is

CðvvÞ ¼ CuðvvÞ þ CpðvvÞ

¼ cu
XM

j¼1

R̂j (
XM

m¼1

lmjvm

 !þ
þ
XM

j¼1

XM

m¼1

vjlmjvm:
ð12Þ

The strategic pricing strategy requires the content
provider to find vv to minimize its operational cost, i.e.,
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min
vv

CðvvÞ

subject to 0 ' vj ' V ; 8j ¼ 1; . . . ;M:
ð13Þ

To close this section, we relate the two pricing problems
as follows: When cu is very large and there is a deficit of
replicas, then the upload cost is significantly larger than the
reward cost, i.e., CuðvvÞ + CpðvvÞ; 8vv. In this case, the content
provider would try to keep the replicas enough for each
video. If CPP has a solution, then the solution to SPP
converges to the solution to CPP when cu !1.

3 ASYMPTOTIC ANALYSIS

In this section, we analyze a practical asymptotic case of the
P2P-VoD systems where either the local storages are
refreshed quite frequently, i.e., a large value for p0, or they
have large capacities, i.e., a large value for C. Most of the
asymptotic results are derived under the limiting condition:
ð1( p0ÞC ! 0. Physically, the above condition means that
the probability a peer keeps watching C videos without
refreshing its local storage approaches zero. We emphasize
that this limiting condition is practical for real systems
where peers do not often watch many videos continuously.
As a result, when a peer stops and rejoins the system, most
likely the data in its local storage become stale and not so
useful for other peers. This reflects the evidence of a high
refreshing probability p0 being reasonable. Meanwhile, the
storage capacity of a peer (i.e., its local hard disk resource)
is typically large, although a typical peer might want to
cache only a limited number of videos. As an example, if a
peer has a probability p0 ¼ 0:3 for refreshment, and caches
at most eight videos, then the quantity ð1( p0ÞC ¼ 0:78 is
quite close to zero.

3.1 Cache State of Peers

We characterize the asymptotic number of Vj cached by a
peer of type m, i.e., rmðjÞ, by the following theorem.

Theorem 1. The average number of Vj cached by a type m peer
approaches pj=p0 when ð1( p0ÞC ! 0, i.e.,

rmðjÞ! pj=p0 when ð1( p0ÞC ! 0; 8j ' m:

Due to page limit, proofs are in the online supplemental
material.

In the following, we call a system as an asymptotic system
when rmðjÞ ¼ pj=p0; 81 ' j ' m 'M. We are interested in
solving both the conservative and strategic pricing pro-
blems in an asymptotic system.

3.2 Conservative Pricing Problem

We first discuss the conservative pricing problem (CPP)
which ensures enough replicas of all videos in the system.
In the following, we will derive the order and value of prices
for a given set of video popularity. We start from the
following lemma, which establishes the relationship be-
tween the cache state of a video and its popularity:

Lemma 1. If two classes of videos are priced the same, then the
ratio of the numbers of replicas in an asymptotic system equals
the ratio of their popularity. Formally, labeling them as Vi and
Viþ1 with vi ¼ viþ1, then Ri : Riþ1 ¼ pi : piþ1.

The above lemma implies that, when setting all the
prices equal, the number of cached copies for each video
would be proportional to its popularity, resulting a sub-
optimal solution for the system. It was pointed out in [21]
that one needs to be “greedy” in replicating unpopular
videos in a P2P-VoD system. Formally, we have the
following assumption:

Assumption 1. For any two videos Vi and Vj with pi < pj, the
desired number of replicas, R̂i and R̂j, satisfy the following
condition: pi=pj < R̂i=R̂j < 1.

An underlined physical reasoning of this assumption is
that, a larger group of peers watching one particular video
can cooperate more effectively than a smaller group. Hence,
the desired number of replicas increases sublinearly with
respect to the video popularity. We have the following
lemma:

Lemma 2. Under Assumption 1, if CPP in an asymptotic system
has a solution vv, then for any two videos Vi and Vj with
popularity pi < pj, we have vi > vj.

The above lemma indicates the important fact that in
CPP, the order of prices is the reverse order of video
popularity. This implies that we need to set higher prices
for less popular videos so that more peers would like to
cache them so as to meet the greedy cache requirement [21].
We assumed previously that V1; . . . ; VM are arranged in a
nonincreasing order of prices, and based on the above result,
the popularity of the videos would be in a nondecreasing
order, i.e., V1 is the most unpopular video and is priced the
highest, whereas VM is the most popular one and is priced
the lowest.

Given the video popularity, we can now determine the
order of prices. Next, we need to decide the value of each
video, which is shown in the following theorem.

Theorem 2. Under Assumption 1, a necessary and sufficient

condition that CPP in an asymptotic system has a solution

is p0R̂1 ' p1N . If this condition is satisfied, then the solution

is vj ¼ p0R̂j

pjN
V ; 8j.

3.3 Strategic Pricing Problem

In this section, we solve the strategic pricing problem (SPP)
where the content provider sets prices to minimize its
operational cost. The following theorem shows the existence
and the closed form of the solution.

Theorem 3. There always exists a solution to SPP. The solution
to SPP for an asymptotic system is vj ¼ minf1

2 cu;
p0R̂j

pjN
V ;

V g; 81 ' j 'M.

Theorems 2 and 3 point out the condition under which
CPP and SPP have solutions. Furthermore, we can get
closed-form solutions for these pricing problems in an
asymptotic system. In the real systems which satisfy
ð1( p0ÞC ! 0, we can apply Theorems 2 and 3 in the
incentive mechanism design, by setting the video prices
using the above asymptotic solutions. By doing this, we can
approach to the system design objectives, i.e., keeping
enough replicas and minimizing the operational cost. It is
also worth noting that the solutions to both pricing
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problems indicate the “reverse order” phenomenon, i.e., for
any pi ' pj, we have vi $ vj, which is an important
guideline for designing the pricing schemes in practice.

4 NONASYMPTOTIC ANALYSIS

In this section, we show that our pricing scheme can be
extended to a general case where the condition ð1( p0ÞC ! 0
does not necessarily hold. This can apply to scenarios where
C is small, for example, VoD on the mobile devices. One
can hardly obtain closed-form solutions like in Section 3.
We start from the following important theorem, which
simplifies our analysis for a given order of video prices.

Theorem 4. Given a fixed order of prices for the videos, the per
peer average number of replicas for Vj by type m peers equals
to the number by type m( 1 peers (8j ' m( 1), i.e.,
rmðjÞ ¼ rm(1ðjÞ; 8j ' m( 1.

In short, this theorem implies that the value of rmðjÞ is
independent of m as long as m $ j. This can greatly
simplify the problem for a given order of prices. In
particular, lmj ¼ N

V ðrmðjÞ ( rm(1ðjÞÞ ¼ 1fj¼mg
N
V rjðjÞ. Hence,

CPP becomes

R̂j ¼
N

V
rjðjÞvj; 0 ' vj ' V ; 8j ¼ 1; . . . ;M; ð14Þ

and SPP becomes

min
v

cu
XM

j¼1

R̂j (
N

V
rjðjÞvj

" #þ
þ
XM

j¼1

N

V
rjðjÞv2

j

s:t: 0 ' vj ' V ; 81 ' j 'M;

vi ( vj < 0; 8i < j:

ð15Þ

Note that for any fixed order of prices, we can calculate
riðjÞ from the close form or recursive algorithm stated in
Section 2. Therefore, we can solve our pricing problems by
the following approach: we exhaustively explore every
possible order of prices, given which we solve the pricing
problem. By comparing or verifying the results for all
these possible orders, we get the final pricing solution. In
particular, for CPP, we can solve vj ¼ R̂jV

NrjðjÞ for any given
price order. If the solution vj; 8j satisfies the preset order,
then it is a solution to CPP. Similarly, for SPP, we can
solve the above convex optimization (15) for any given
price order; these pricing schemes are the optimal
candidates among which we select the one that minimizes
the operational cost.

Trying every possible order of prices can be computa-
tionally expensive, in particular, when the number of
videos is large. However, one can categorize the videos of
similar popularity into one class, and design the pricing
strategy based on this limited number of classes.

Example. We use the following example to illustrate the
procedure. Due to page limit, we only present CPP. We
have two video classes: popular and unpopular, and
peers’ storage capacity is 2. Based on Fig. 2 and balancing
equations, we can calculate the fraction of peers in each
state, which are

r1ð1Þ ¼
p0p1 þ 2p2

1

ðp0 þ p1Þ2
;

r2ð2Þ ¼
p0p2

ðp0 þ p1 þ p2Þ2
p2

0 þ 3p2
1 þ 4p0p1 þ 2p0p2 þ 3p1p2

ðp0 þ p1Þ2
:

We consider the following two cases.
Case 1: We set N ¼ 10; 000; V ¼ 1; and p0 ¼ 0:2, The two

class popularities are 0.6 and 0.2, and the corresponding R̂j

are 2,000 and 1,000, respectively. We can verify there does
not exist any solution to CPP: no matter we set p1 ¼ 0:6;
p2 ¼ 0:2, (where we have r1ð1Þ ¼ 1:31; r2ð2Þ ¼ 0:13) or p1 ¼
0:2; p2 ¼ 0:6 (where we have r1ð1Þ ¼ 0:75; r2ð2Þ ¼ 0:69), the
prices p1 and p2 calculated from vj ¼ R̂jV

NrjðjÞ do not satisfy
v1 $ v2.

Case 2: We set N ¼ 10; 000; V ¼ 1; and p0 ¼ 0:6, The two
class popularities are 0.3 and 0.1, and the corresponding
R̂j are 1,000 and 500, respectively. We can verify there
exists a unique solution to CPP: we set p1 ¼ 0:1 and p2 ¼
0:3 (where we have r1ð1Þ ¼ 0:16; r2ð2Þ ¼ 0:40), the prices
are v1 ¼ 0:31 and v2 ¼ 0:25, which satisfies v1 $ v2.

This example is for illustration only. In fact, one can
apply our methodology to any nonasymptotic analysis.

5 GENERALIZATIONS AND EXTENSIONS

In the previous section, we have analyzed the conservative
and strategic pricing problems under the asymptotic system
and showed some important implications. In real system
implementations, our simple model may need to be
extended so as to be adaptive to some practical issues. We
deal with the following problems in this section:

. What is the impact if some peers do not watch a
video but cache the data only for sake of reward?

. How to deal with a general price sensitivity model,
i.e., the fraction of peers willing to cache the video is
not necessarily proportional to the price?

In what follows, we extend our model to answer the
above questions, respectively. For the simplicity of pre-
sentation, we make each extension separately on the basis of
the simple model in Section 3. However, readers may note
that these extensions are independent and can be easily
combined in practical system designs.

5.1 Viewing-Caching Decoupling

In the previous analysis, we assume that a peer caches a
video only if it watched the video previously. In reality,
some intelligent peers may cache the video data only for the
sake of earning reward, even if they are not interested in
watching it at all. In such a case, the viewing and caching
behaviors of a peer can be totally decoupled. Such behavior
can impact on the distribution of replicas in the system.

We call the peers as “ordinary peers” if they cache the
data only if they watched the video (which we discussed in
the previous sections), and we call those as “intelligent
peers” if they totally decouple the viewing and caching
behaviors. Let ! be the fraction of ordinary peers in the
system, and 1( ! be the fraction of intelligent peers. For
ordinary peers, the number of replicas cached for Vj is
!
PM

m¼1 lmjvm, where lmj ¼ N
V ðrmðjÞ ( rm(1ðjÞÞ as defined in
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Section 2. For intelligent peers, the replica distribution does
not depend on the video popularity, but only depends on
the video prices. If a video is with a higher price, then it is
expected to have more replicas in the system. In here, we
assume a simple linear model, i.e., the number of replicas
for Vj is proportional to its price vj, and let it be " vj

V N where
" is the coefficient. Then, the number of replicas in the
whole system is

RjðvvÞ ¼ !
XM

m¼1

lmjvm þ "
vj
V
N: ð16Þ

Taking this formula into the definition of conservative
and strategic pricing problems, we can solve the prices
accordingly. In particular, we still focus on the asymptotic
system.

Theorem 5. Under Assumption 1, a necessary and sufficient
condition that CPP has a solution is p0R̂j ' ð!pj þ "p0ÞN; 8j.
If this condition is satisfied, then the solution is

vj ¼
p0R̂jV

ð!pj þ "p0ÞN
; 8j:

Theorem 6. There always exists a solution to SPP. The solution
to SPP for an asymptotic system is vj ¼ minf1

2 cu;
p0R̂jV

ð!pjþ"p0ÞN ;
V g; 81 ' j 'M.

A key observation is that when considering the
intelligent peers, the “reverse order pricing” phenomenon
may not apply any more. In particular, if peers are
ordinary peers, i.e., ! ¼ 1 and " ¼ 0, then the solutions
are the same as in Theorems 2 and 3 where the order of
prices is the “reverse” order of popularity. However, if all
peers are intelligent peers, i.e., ! ¼ 0, then the order of
prices is the “same” order of popularity. For general cases
that lie in between, the order of prices depends on the
fraction of ordinary/intelligent peers, or the order of values
of p0R̂jV
ð!pjþ"p0ÞN .

5.2 General Sensitivity Model

In Section 2, we applied a linear sensitivity model to
characterize the impact of pricing on the peers’ type
distribution. In real systems, the sensitivity model can be
complicated. We will show that under realistic assump-
tions, one can still effectively find the desired pricing
schemes. Assume that given any nonnegative price vj for
video Vj, a fraction fðvjÞ of peers (fðvjÞ 2 ½0; 1*) are willing
to cache this video provided that they watched it. Based on
this model, the number of replicas for Vj becomes

RjðvvÞ ¼ N
XM

m¼0

ðfðvmÞ ( fðvmþ1ÞÞrmðjÞ ¼ V
XM

m¼1

lmjfðvmÞ;

ð17Þ

where lmj ¼ N
V ðrmðjÞ ( rm(1ðjÞÞ as defined in Section 2.

Correspondingly, the conservative pricing problem becomes

R̂j ¼ V
XM

m¼1

lmjfðvmÞ; vm $ 0; 8j ¼ 1; . . . ;M: ð18Þ

The strategic pricing problem becomes

min cu
XM

j¼1

R̂j ( V
XM

m¼1

lmjfðvmÞ
 !þ

þ V
XM

j¼1

XM

m¼1

vjlmjfðvmÞ;

s:t: vv $ 0:

ð19Þ

In real systems, the sensitivity function can be compli-
cated, and system designers need to perform various
measurements to approximate this function. How to
observe this sensitivity function is beyond the scope of this
paper. Here, we make the following assumption for the
sensitivity function.

Assumption 2. fðvÞ is a concave, continuous, and nondecreas-
ing function in v. Furthermore, fð0Þ ¼ 0, fð1Þ ¼ 1.

Assumption 3. vfðvÞ is a convex, continuous, and increasing
function in v.

The above assumptions are realistic in practical systems:
Assumption 2 means the fraction of peers willing to cache
increases sublinearly with respect to the price, implying the
diminishing return to scale effect observed in many similar
economic scenarios. Assumption 3 means the total reward
cost increases superlinearly with respect to the price (or unit
reward), since the fraction of peers receiving the reward
increases with respect to the price. Based on these
assumptions, we will show that it is still efficient to get
the solutions to CPP and SPP. In the following theorem, we
first solve CPP.

Theorem 7. Under Assumptions 1 and 2, a necessary and
sufficient condition that CPP for an asymptotic system has a
solution is p0R̂1 ' p1N . If this condition satisfies, then the
solution is vj ¼ f(1ðp0R̂j

pjN
Þ, where f(1ð%Þ is the reverse function

of fðvjÞ.

The next theorem shows that SPP is a convex optimiza-
tion problem, which could be solved efficiently.

Theorem 8. Under Assumptions 1, 2, and 3, SPP for an
asymptotic system is a convex optimization.

The above two theorems indicate that, even under
general sensitivity models, it is still efficient to calculate
the optimal prices for the conservative/strategic pricing
problems. Hence, our pricing scheme is practical in real
system designs.

In the closing of this section, we point out that we also
consider the pricing strategy before the system reaches the
steady state. Due to page limit, we provide the material in
the online supplemental material.

6 PERFORMANCE EVALUATION

In this section, we use simulation-based experiments to
evaluate the performance of our pricing schemes. In the
simulation, we have fixed number of videos and peers. Time
is divided into T slots. In each slot, each peer randomly
chooses a particular video with a certain probability (i.e.,
video popularity); each peer randomly leaves the system
with probability p0, and if this happens, we have a new peer
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joining the system with refreshed (thus empty) storage.
In each case, we run the simulation for T ¼ 100 slots and
show the average value in the figures. We consider a fully
connected P2P system and omit the effect of various issues
(e.g., firewalls). We first run the simulations based on the
basic model in Section 3 (see Figs. 3, 4, and 5), and then
extend our results in general cases (see Fig. 6).

In particular, we have the following settings:

. We set N ¼ 10;000 peers and M ¼ 100 video classes.
This is to model a medium scale P2P-VoD system.

. Each peer can cache up to C ¼ 6 videos, i.e., a few
GB storage space which a normal peer can afford.

. In each slot, a peer has a probability p0 ¼ 0:5 to
refresh its storage.

. Videos’ popularity pj follows a Zipf distribution
with parameter # ¼ 0:7. We apply this setting
because Zipf distribution is observed in many video
popularity measurements.

. The desired number of replicas R̂j follows a Zipf
distribution with parameter # ¼ 0:3, and maximum
value R̂100 ¼ 100. We apply this setting to cope with
the shape of pj and to follow Assumption 1.

. We normalize the maximum price V ¼ 1.

We apply the pricing mechanism derived for the
asymptotic system, and evaluate the effectiveness of con-
servative and strategic pricing schemes. We first validate our
result in Theorem 1. In Fig. 3, we plot the average number of
replicas of Vj (i.e., rMðjÞ) cached by a single peer of type
M ¼ 100. In comparison, we also plot the value pj=p0 for
each video Vj. From the figure, we can verify rMðjÞ is very
near to pj=p0 under the simulation settings. Note that there is
a bit gap between rMðjÞ and pj=p0 for the few most popular
videos. This is due to the effect of replacement: when the
peers reach their storage capacity and perform replacement,
the videos with larger indices (or low prices) are more easily
to be replaced. Replacement is not considered in the
asymptotic case, and hence leads to this difference.

We next apply the conservative pricing scheme, i.e.,
vj ¼ p0R̂j

pjN
V . In Fig. 4a, we plot the video popularities versus

the prices proposed for each video. It shows that the order of
prices is the reverse order of popularity. We also compare
the number of replicas desired (i.e., R̂j) versus cached (i.e.,
Rj) in the system using the conservative pricing scheme. In
Fig. 4b, we plot ðRj ( R̂jÞ=R̂j, i.e., the relative difference
between Rj and R̂j. A positive value represents the
percentage of replicas cached in the system but is more
than desired, while a negative value indicates the deficit.
The figure shows that using the conservative pricing
scheme, the number of replicas for each video is very close
to the value desired. We also note that the popular videos
lack a few percentage of replicas due to the similar reasons
stated above. A natural way to fill up this gap is to propose a
bit higher prices for the popular videos. We apply a heuristic
amendment by setting v0j ¼

p0R̂jV
ðp0þpjÞN , and the corresponding

result is shown in Fig. 4c. We can see that using the heuristic
amendment, the number of replicas cached by peers is a bit
more than desired for the popular videos.

We also apply the strategic pricing scheme, i.e.,

vj ¼ minfcu2 ;
poR̂j

pjN
V ; V g. The unit upload cost cu can have

a major impact on the prices. In Fig. 5a, we apply three

typical values of cu: cu ¼ 0:2, 1, and 2, and plot the prices

which solve the strategic pricing problem. When cu is
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Fig. 3. Verification of Theorem 1.

Fig. 4. Conservative pricing scheme.

Fig. 5. Strategic pricing scheme.

Fig. 6. Viewing-caching decoupling.



small, i.e., the unit upload cost of the content server is

small, the prices are upper bounded by cu
2 ; whereas when

cu is large, the solution to the strategic pricing problem is

the same as the conservative pricing problem. In Fig. 5b,

we vary cu 2 ½0:2; 2:0*, and compare the content provider’s

operational cost using the strategic pricing scheme versus

that without using any incentive scheme. The figure

shows that when the upload cost is high, the strategic

pricing scheme earns a high cost reduction, which

validates the effectiveness of our incentive scheme.
In Fig. 6, we illustrate a major difference on the order of

prices when the system consists of certain amount of
“intelligent” peers that decouple viewing and caching
behaviors. In particular, we consider CPP and the prices
are determined according to vj ¼ p0R̂jV

ð!pjþ"p0ÞN ; 8j. We set (a)
! ¼ 0:9;" ¼ 0:002, (b) ! ¼ 0:8;" ¼ 0:01, (c) ! ¼ 0:6;" ¼
0:015, and (d) ! ¼ 0:2;" ¼ 0:04, respectively. We can
observe that when the majority are ordinary peers, the
order of prices is the reverse order of popularity (see “a”); on
the other hand, if there are a number of intelligent peers,
then the order of prices is the same order of popularity (see
“d”). In the cases in between, the price may not be
monotonic with respect to the change of popularity (see
“b” and “c”). We also consider the nonlinear sensitivity
model, in particular, we assume fðvÞ ¼ 1( e(v. According
to previous analysis, the solution to CPP is (lnð1( ðp0R̂j

pjN
ÞÞ

which we plot in Fig. 7. We observe a similar trend as in
Fig. 4a; the differences are 1) the largest price is not upper
bounded by V ; and 2) the decreasing trend of the prices
seems more like linear.

7 RELATED WORK

There have been number of research works on incentive
issues for P2P systems. In [24], the authors presented a
general framework to characterize the system performance
and robustness for a class of adaptive incentive protocols.
Park and Van Der Schaar [17] proposed a game theoretic
framework and analyzed the content production and
sharing model under different incentive schemes in a P2P
network. Several particular methods were proposed for
incentive schemes. Based on the peers’ historical contribu-
tions to the community, service differentiation models [10],
[14], and reputation systems [9], [11] were proposed to
provide incentives. Aperjis et al. [1] and Freedman et al. [7]
proposed a multilateral exchange scheme for content
distribution networks. Recently, Misra et al. [15] proposed

a Shapley value approach which serves as a new mechan-
ism for incentives in P2P systems.

While earlier works [5], [6], [8] are mainly for file sharing
systems, recent works have been focusing on P2P stream-
ing/VoD systems, for example, modified tit-for-tat protocol
[16], [18], punishment-based [13] and reward-based [4], [22]
mechanisms were proposed to provide incentives. Recently
Wu et al. [19] proposed an auction-based incentive protocol
for P2P VoD streaming. These works incentivized the peers
to provide their upload bandwidth to serve other peers, but
did not address how to ensure the peers have cached the
proper data so that they are able to upload. In [20], [21], [25],
the authors discussed the replication strategies in P2P-VoD
systems; nevertheless, up till now, we have not found any
work on incentivizing the peers in P2P-VoD systems to
participate in the distributed caching. Our work differs
from the previous in that our incentive scheme stimulates
the peers to contribute the local storage resources and cache
the desired data so that they can effectively upload the
content to one another in P2P-VoDs.

8 CONCLUSION

In this paper, we propose a reward-based incentive
mechanism to stimulate the peers to contribute their local
storage resources in a P2P-VoD system. In particular, the
content provider proposes a price for each video. The most
interesting finding is that, the order of video prices should
be the reverse order of video popularity. More precisely, in
an asymptotic system, we can get closed-form solutions to
the conservative/strategic pricing problems that keep
enough video replicas in the system and minimize the
content provider’s operational cost. We also show that our
pricing scheme can be adaptive to various system environ-
ments, for examples, viewing-caching decoupling peers, the
nonlinear price sensitivity model, nonasymptotic system,
and highly dynamic video popularity. We evaluate the
performance and validate the effectiveness of our incentive
scheme via extensive simulations.

There are a number of issues to consider for our future
work. First, as we mentioned earlier, incentive designs
include local storage and upload bandwidth. We have
analyzed the latter issue in another paper [22], but it
remains an open question on how to perfectly combine
these two aspects of design, and how to incentivize
distributed caching in lack of bandwidth. Second, it is
interesting (yet difficult) to learn the real sensitivity
function of peers in practical systems so as to make the
incentive scheme more profitable. Third, peers may be
classified into different “taste groups” according to their
intrinsic preference toward the video contents, and based
on this classification, different groups of peers have certain
watching preference, so an incentive scheme can be
specialized based on the group. Last but not the least, the
P2P-VoD system is highly dynamic, not only in video
popularity, but also in peers’ churn and their type
distribution. The content provider may not have complete
information all the time, and it is important yet challenging
to learn the feature of system dynamics and adjust the
pricing scheme correspondingly.
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