
4430S
Data Communication and Computer Networks

Dr. WONG Tsz Yeung

Chapter 2, Part 1
 Application Layer & Programming

The playground of all fancy applications.

Pre-requisite: process (service) identification

• Every end host on the Internet is assigned an IP address.
– Note that a machine can have more than one IP address!

• However, a machine may provide more than one services!
– How can a client call for a particular service?

– Such as:
• http service of 137.189.91.192, or

• telnet service of 137.189.91.192.

– How can a client identify them?

Spring semester, 2011-2012 CSCI4430S Page 2

CSE Web Server

IP address:
137.189.91.192

Spring semester, 2011-2012 CSCI4430S Page 3

Pre-requisite: process (service) identification

• Well…the communication port is a
number, is a logical representation.
– Different services are identified by

different port numbers.

– HTTP is usually of port 80.

– telnet is usually of port 23.

• Look up /etc/services in Linux
for details.

CSE Web Server

IP address:
137.189.91.192

http server
process

telnet server
process

 port 80

port 23

Spring semester, 2011-2012 CSCI4430S Page 4

Pre-requisite: process (service) identification

• To request for a service, you need to know:
– the IP address of the remote machine;

– the port number that the service resides;

– the “language” that the service is talking in.

• For example, the web service provided by the CSE web server is on:
– IP address: 137.189.91.192 (Network layer ID);

– Port number: 80 (Transport layer ID);

– Language: HTTP (Application layer content);

• FYI, usually there are two ways for a process to handle another
process that speak alien languages.
– Guess! What are the ways?

Spring semester, 2011-2012 CSCI4430S Page 5

Pre-requisite: process (service) identification

Service Name Protocol Name TCP/UDP Port Number

Web HTTP TCP 80

Web with encryption HTTPS TCP 443

Secure Shell SSH TCP 22

Email sending SMTP TCP 24

Domain name service DOMAIN UDP 53

Email retrieval

POP3 TCP 110

IMAP v3 TCP 220

IMAPS TCP 993

Spring semester, 2011-2012 CSCI4430S Page 6

The Big Picture...

Computer running
a web browser.

Computer running
a web server.

Application

Transport

Network

Data Link

Physical

sending a
message using
the application layer

Application

Transport

Network

Data Link

Physical

retrieving a
message
from the
application
layer

messages follow
pre-defined
protocol(s).

Spring semester, 2011-2012 CSCI4430S Page 7

The Big Picture...

Design Component #1

Application Application

messages follow
pre-defined
protocol(s).

“Medium” Reliable or not?

Encoding ASCII, Binary, Compression, Encryption?

Connection type Persistent or not?

Process Internal Stateful or Stateless?

Protocol content What is the syntax?

Spring semester, 2011-2012 CSCI4430S Page 8

(Simple) Peer-to-Peer Model

Client-Server
Model

How about a mix of both models?

The Big Picture...

Design Component #2

of connections &
communication model

Spring semester, 2011-2012 CSCI4430S Page 9

A server usually needs one
incoming socket only.

The Big Picture...

Application

Transport

Application

Transport

incoming
socket

outgoing
socket

incoming
socket

Design Component #3 Socket
- is a file descriptor;
- defines a connection;
- has 2 types: incoming & outgoing.

The model and the
need define the #
and types of sockets!

Both incoming & outgoing?
This may be a P2P model.

Spring semester, 2011-2012 CSCI4430S Page 10

The Big Picture...

Design Component #4

Multi-process Multi-threading

Programming Overheads

I/O Multiplexing – select().

Process Synchronization.

Programming Overheads

File descriptor limit.

Thread Synchronization.

Spring semester, 2011-2012 CSCI4430S Page 11

So, what is application layer?

• It is a top-down design of an application!

Define your goal

Define the types
of players.

Your goal defines:
- TCP or UDP?
- Stateful or stateless?
- Persistent or not?

Define the language.

The goal does not affect:
- encoding;
- syntax;

Define how the players
(a) connect?
- # of connections
- model.

(b) are implemented?
- thread or process?

Your goal
influences
a lot!

Spring semester, 2011-2012 CSCI4430S Page 12

Characteristics #1: state

SSH server state

Stateless Scenario

current user: NIL

Login

Request

Response

Successful
Login: NO

current user: tywong

Successful
Login: YES

Stateful Scenario

Next request

Response

Request

Property #1:
Processes memorize nothing for incoming messages.

Property #2:
Order of request messages is not important.

SSH client state

Observation:
Order of request messages is important.

Spring semester, 2011-2012 CSCI4430S Page 13

Characteristics #2: persistence

SSH server state

Non-Persistent Scenario

current user: NIL

Login

Request

Response

Successful
Login: NO

current user: tywong

Successful
Login: YES

Persistent Scenario

Next request

Response

and BYE

Request

Hang up after the job is done.

SSH client state

Observation.
State and persistence usually come
together, not necessarily a requirement.

Logout request

Response and BYE

Hang up upon explicit requests.

Spring semester, 2011-2012 CSCI4430S Page 14

Characteristics #2: persistence

Non-Persistent Connection

Advantages Disadvantages

Easy to implement.

E.g., no need to implement timeout for idle
connections.

Start a TCP connection for each document.
The overhead is large for both client and
server.

E.g. A browser has to open parallel
connections to fetch a number of
documents at the same time.

It is a problem when the number of
connections is constrainted.

The server or the client are not required to
memorize anything.

Another issue is that non-persistent
connection is not suitable for implementing
stateful protocols.

Spring semester, 2011-2012 CSCI4430S Page 15

Persistent Connection

Advantages Disadvantages

Less overhead.

All the requests can use the same TCP
connection.

The request has to be sent one by one: only
after a proper response has been received.

No pipelining.

Support stateful protocols.

E.g., a login procedure can be implemented
by using the same TCP connection.

Discussion: Is it a must to have persistent
connection when you are logging in?

Garbage collection for idle connections.

Else, you’ll be running out of available
connections.

Characteristics #2: persistence

Spring semester, 2011-2012 CSCI4430S Page 16

Protocol Stateful? Persistence?

HTTP

HTTPS

DNS

FTP

SSH

Characteristics #1 + #2

• Let’s fill in the blanks.

Protocol Stateful? Persistence?

HTTP NO YES and NO

HTTPS YES YES

DNS NO NO

FTP YES YES

SSH YES YES

For the difference between HTTP and HTTPS, please attend CSCI5470 lectures!

Can be turning
on and off.

Spring semester, 2011-2012 CSCI4430S Page 17

Characteristics #3: encoding

• Usually, encoding comes in two ways:

– compression & binary-data representation.

In a generic setting, there is a
header telling you:
 - is compression turned on?
 - what is the algorithm used?

The compressed data.
E.g., HTTP supports GNU gzip.

Compression

Binary-data representation

HDR DATA

HDR DATA

Usually, such an encoding is needed
because of the protocol itself. Similarly,
the header tells you:
 - what is the algorithm used?
 E.g., uuencode & base64.

The encoded data.
(Let’s look at my emails).

Spring semester, 2011-2012 CSCI4430S Page 18

Characteristics #4: syntax

• Protocol-independent design.

Concerns Description

Delimiter? Hard coding the length of each field? Or, using a common
delimiter to tokenize the message?

ASCII / Binary? Just the designer’s style...

Length Limitation? E.g., UDP has a soft constraint on the message length.

Terminator? How do you know the end of a message?

Opcode Operand #1 Operand #2 Terminator?
Request
Message

Status Result #1 Result #2 Terminator?
Response
Message

Spring semester, 2011-2012 CSCI4430S Page 19

Application layer
 - Protocol design:
 Learn from examples!
 - HTTP

Spring semester, 2011-2012 CSCI4430S Page 20

Learn from example #1 – HTTP

• HTTP – HyperText Transfer Protocol
– HTTP 1.0 – RFC 1945.

– HTTP 1.1 – RFC 2616

• A request-response protocol: always the client makes the 1st move!

• Characteristics:
– Since it transfers files, TCP is required.

– It is a stateless protocol!

– It can be a non-persistent protocol!

– Encoding:
• no encryption (well, HTTPS is another protocol);

• compression is optional (using gzip).

Spring semester, 2011-2012 CSCI4430S Page 21

Learn from example #1 – HTTP

• Sidetrack – what is a connection?

– A connection is established based on TCP!

Client Server

Some TCP things are happening here.
We call those steps the TCP
handshaking.

This marks the start of a connection.

For example, when two strangers meet,
before they really start a conversation,
they shake hands and introduce
themselves.

Spring semester, 2011-2012 CSCI4430S Page 22

Learn from example #1 – HTTP

• Sidetrack – what is a connection?

– A connection is established based on TCP!

Client Server

Application-layer messages can only be
sent after TCP has established a reliable
connection!

TCP guarantees that
- the application always has a connection.
- the messages are always delivered.

Request Message

Response Message

Spring semester, 2011-2012 CSCI4430S Page 23

Learn from example #1 – HTTP

• Sidetrack – what is a connection?

– A connection is established based on TCP!

– A connection is closed because of TCP!

Client Server

Last, the server/the client drops the
connection with another TCP handshaking.

Continuing the example, when one of the
strangers wants to stop talking, he will
shake the other guy’s hand, and says
“Nice to meet you”. Then, he leaves.

Request Message

Response Message

Spring semester, 2011-2012 CSCI4430S Page 24

Learn from example #1 – HTTP

• Simplified goal: one-way, reliable file transfer.

• Players:

Players Goal Model & Implementation Language Definition

Role Description

Browser

(Active role)

- Know the location of a server.

- Know the path to the target file on the server.

- Connect to the server and retrieve the file.

Web server

(Passive role)

- Waiting for connection.

- Read the path to a file.

- If the path is OK, return the file content. Else, read an error.

Spring semester, 2011-2012 CSCI4430S Page 25

Learn from example #1 – HTTP

• Model: client-server.

Client Properties Server Properties

Can be any network addresses. Fixed and well-known network address.

Execute on-demand: short-lived comparing to
the server.

Always executing.

When failed, we call that downtime.

Consume services. Provide services.

(That’s why it is called “server”).

Active role:

the one who initiates the communication.

Passive role:

the one who waits for communication.

Players Goal Model & Implementation Language Definition

Spring semester, 2011-2012 CSCI4430S Page 26

Learn from example #1 – HTTP

• Implementation?

Players Goal Model & Implementation Language Definition

Discussion: Are multiple connections needed? Why?

Discussion: Are multiple connections needed? Why?

Spring semester, 2011-2012 CSCI4430S Page 27

Learn from example #1 – HTTP

• Implementation?

Players Goal Model & Implementation Language Definition

Concurrent connections are usually implemented in a client.
It depends on the browser, but is not required by HTTP!

Every browser supports parallel downloads.
It is a good practice for boosting up the performance.
Yet, every download is a HTTP connection!

Spring semester, 2011-2012 CSCI4430S Page 28

Learn from example #1 – HTTP

• Implementation?

Players Goal Model & Implementation Language Definition

Concurrent connections are always implemented in a server.
It depends on the server, but is not required by HTTP!

Every server must be able to serve multiple clients at the
same time.
(Think about the consequence if this feature is missing...)

Discussion. What if there is only one
instance of server running?
(meaning 1 process with 1 thread.)

Spring semester, 2011-2012 CSCI4430S Page 29

HTTP – syntax: message format

Concerns Description

Delimiter? Space character, line feed + New line “\r\n”

ASCII / Binary? ASCII header (opcode), Binary operand.

Length Limitation? No.

Terminator? No. Length is limited by the “content-length”
header field.

HEADERS

CONTENT

Header stores a lot of information of the request.
E.g., the location, the HTTP cookies, etc.

Content is the file/data to be transferred.

• For both request and response...

Spring semester, 2011-2012 CSCI4430S Page 30

HTTP – syntax: message format

• Request message:

• Response message:

GET Location Version \r \n

User-Agent Value : \r \n

Other header fields Value : \r \n

\r \n Content

If the fields:
 - Content-Type exist, and
 - Content-Length > 0,
then,

there exists a content
body at the end of the
request (response)
message.

Version Status Code Response Phrase \r \n

Content-Type text/html : \r \n

Content-Length (Length in bytes) : \r \n

Content \r \n

Content-length

Spring semester, 2011-2012 CSCI4430S Page 31

HTTP – syntax: message format

• Example:

Get method
request header

Response
Header

$ telnet www.cse.cuhk.edu.hk 80
Trying 137.189.91.192...
Connected to fortress.cse.cuhk.edu.hk.
Escape character is '^]'.
GET /~tywong/4430.html HTTP/1.0
User-Agent: Mozilla/4.0

HTTP/1.1 200 OK
Date: Tue, 11 Jan 2011 14:46:03 GMT
Server: Apache
Accept-Ranges: bytes
Vary: Accept-Encoding
Content-Length: 31
Connection: close
Content-Type: text/html

<html>
Welcome to 4430
</html>
Connection closed by foreign host.
$ _

Response
Content

Non-persistent
connection!

Connection: keep-alive

Try persistent connection with
the following header line:

Spring semester, 2011-2012 CSCI4430S Page 32

HTTP – syntax: illegal characters

• The language is quite “brain-damaging” because...

– There are illegal characters for the header...

• Space, new line, line feed, `:’, etc.

– So, encoding is needed for header values!

GET Location Version \r \n

Byte value of illegal char.
E.g., space

% 2 0

Hex value

User-Agent Value : \r \n

Spring semester, 2011-2012 CSCI4430S Page 33

HTTP – language: request method

• There are two popular methods:

– “GET”: download data.

– “POST”: upload data.

GET Method

Response

Content

POST Method

Response

Content

Content

Spring semester, 2011-2012 CSCI4430S Page 34

HTTP – language: response value

Code Class Description

2xx Successful Request can be fulfilled.

3xx Redirection The object is moved to some where else.

4xx Client Error The client is doing something wrong.

5xx Server Error The server is not able to process the request successfully.

Status
Code

Response
Phrase

Description Example

(in one line)

200 OK Request succeeded. Object is
given later in the message.

NIL

301 Move
Permanently

Object moved. New Location
is specified later in the
message.

GET /~tywong

400 Bad Request Request is not understood
by the server

GET /~tywong HTTP/1.1

403 Forbidden Object is not allowed to be
accessed.

(chmod to 600, then try again)

404 Not Found Object is not found on the
server.

GET /~tywong/4430

Spring semester, 2011-2012 CSCI4430S Page 35

HTTP – language: content encoding

• What is the Content-Type header field?
– The value of Content-Type is defined in the MIME

(Multipurpose Internet Mail Extension) standard
• see RFCs 2045-2048.

– This is a formal standard to define
• the type of a document; and

• the file extension of a document.

– Take a look at the file “/usr/share/mime/globs”
in Linux.

Spring semester, 2011-2012 CSCI4430S Page 36

HTTP - Summary

Transport Layer
Protocol

TCP

Header encoding ASCII

Content encoding ASCII or binary

- depends on the “Content-Type” header field.

Message exchange Request-response

- client is always the first guy to speak.

Connection duration Depends on the “Connection” header field.

- “close”: closed by the server after response has been sent.

- “keep-alive”: closed by the server after the connection is idle
for certain second.

Spring semester, 2011-2012 CSCI4430S Page 37

Application layer
 - Protocol design:
 Learn from examples!
 - HTTP
 - DNS

Spring semester, 2011-2012 CSCI4430S Page 38

Learn from example #2 – DNS

Name: www.cse.cuhk.edu.hk
IP address: 137.189.91.192

I don’t know
the IP…

Go to www.cse.cuhk.edu.hk

DNS
Server

Don’t panic.
I know where it is.

Searching…

Where is “www.cse.cuhk.edu.hk”?

137.189.91.192

HTTP Request

Spring semester, 2011-2012 CSCI4430S Page 39

DNS – What is it?

• Every computer must know about at least one
DNS server.

Also, try to take a look at
“/etc/resolv.conf” in
Linux and Unix.

Spring semester, 2011-2012 CSCI4430S Page 40

DNS - Functions

• Basic functions: translation!
– Translate hostname to IP address.

– Translate IP address to hostname.

$ nslookup pc91072.cse.cuhk.edu.hk
Server: 137.189.91.188
Address: 137.189.91.188#53

Name: pc91072.cse.cuhk.edu.hk
Address: 137.189.91.72

$ nslookup 137.189.91.72
Server: 137.189.91.188
Address: 137.189.91.188#53

Name: pc91072.cse.cuhk.edu.hk
Address: 137.189.91.72

result

result

Spring semester, 2011-2012 CSCI4430S Page 41

DNS - Functions

• Additional functions: host aliasing
– Translate a hostname into its canonical (formal) name.

– E.g.,
• The name: www.google.com is just an alias.

• The true name is www.l.google.com.

$ nslookup www.google.com
Server: 137.189.91.188
Address: 137.189.91.188#53

Non-authoritative answer:
www.google.com canonical name = www.l.google.com.
Name: www.l.google.com
Address: 72.14.235.147
Name: www.l.google.com
Address: 72.14.235.99
Name: www.l.google.com
Address: 72.14.235.104

Spring semester, 2011-2012 CSCI4430S Page 42

DNS - Functions

• Additional functions: load distribution.
– This is to distribute the load of client machines, not the DNS

server itself.

– The DNS server can translate a name to more than one IP
addresses.

– This allows the load distribution of busy machines.

$ nslookup www.google.com
Server: 137.189.91.188
Address: 137.189.91.188#53

Non-authoritative answer:
www.google.com canonical name = www.l.google.com.
Name: www.l.google.com
Address: 72.14.235.147
Name: www.l.google.com
Address: 72.14.235.99
Name: www.l.google.com
Address: 72.14.235.104

Spring semester, 2011-2012 CSCI4430S Page 43

DNS - Feature

• DNS is a global facility.

• Everyone on this Earth should
– be able to use the DNS service.

– have the same result returned from the DNS service.

• How to manage such a big, important facility?

Spring semester, 2011-2012 CSCI4430S Page 44

DNS - Feature

• The DNS takes a decentralized approach.

• The advantages are:

– (1) No single point of failure;
• Taking down one DNS server will not take down the whole Internet.

– (2) Traffic distribution;
• The entire population on Earth is using this single system.

• It is not possible to have one centralized server to take such a huge
workload.

Spring semester, 2011-2012 CSCI4430S Page 45

DNS - Feature

• The DNS takes a decentralized approach.

• The advantages are:

– (3) Geographical advantage.
• If there is only one or a few centralized DNS servers, a request has to go

through a long way in order to reach the server.

• A local DNS can help solving the problem!.

– (4) Maintenance.
• If a single DNS is used, then

– the DNS database will be huge;

– updating will be frequent.

• Every organization should keep its own records only.

Spring semester, 2011-2012 CSCI4430S Page 46

cuhk.edu.hk

DNS – Server Organization

• How the DNS servers are organized?

– a layered architecture.

Root DNS Servers

.com DNS servers .org DNS servers .hk DNS servers

edu.hk gov.hk
yahoo.com amazon.com slashdot.org

hkbu.edu.hk

Top-level Domain (TLD)

Second-level TLD

Sub-domains

http://www.tcpipguide.com/free/t_DNSRootNameServers-3.htm
http://en.wikipedia.org/wiki/.com
http://en.wikipedia.org/wiki/.org
http://en.wikipedia.org/wiki/.hk

Spring semester, 2011-2012 CSCI4430S Page 47

DNS – Server Organization

ns1.cuhk.edu.hk
ns2.cuhk.edu.hk
ns3.cuhk.edu.hk

beryl.cse.cuhk.edu.hk
garden.cse.cuhk.edu.hk
sapphire.cse.cuhk.edu.hk

Local DNS Servers
in CSE Department.

Authoritative DNS
Servers in CUHK.

Local DNS Servers
in IE Department.

ns1.ie.cuhk.edu.hk
ns2.ie.cuhk.edu.hk

• CUHK Example

Spring semester, 2011-2012 CSCI4430S Page 48

DNS – Lookup Example

• Iterated query
– the local DNS server does the

following:
– “I don’t know this name, but

I ask other servers.”

• Not practical.

– local DNS server has to
handle many queries for one
translation.

requesting host
pc91087.cse.cuhk.edu.hk

www.pccw.com

root DNS
server

local DNS server
beryl.cse.cuhk.edu.hk

1

2

3

4

5

6

authoritative DNS server
dns1.pccw.com

7
8

TLD DNS server
“.com”

Looking up: www.pccw.com

Spring semester, 2011-2012 CSCI4430S Page 49

DNS – Lookup Example

• Recursive query
– the local DNS server does the

following:
– “I don’t know this name, but

I ask my upper servers to
search.”

• Current practice.
– Other DNS servers can cache

the name record to speed up
later queries.

requesting host
pc91087.cse.cuhk.edu.hk

www.pccw.com

root DNS
server

local DNS server
beryl.cse.cuhk.edu.hk

1

2

3

4
5

6

authoritative DNS server
dns1.pccw.com

7

8

TLD DNS server
“.com”

Looking up: www.pccw.com

Spring semester, 2011-2012 CSCI4430S Page 50

• DNS Cache

– A cache is a stable storage in a DNS server.

– The goal is to speed up the DNS queries.

– After a DNS server has retrieved a name
record from other DNS servers, the DNS
server stores the record into its cache.

DNS – Caching and Update

disk
cache

www.pccw.com

www.pccw.com

www.pccw.com

Spring semester, 2011-2012 CSCI4430S Page 51

• DNS Cache

– When the same record is requested, the
DNS server uses the record in cache to
reply to the request.

• Note that every name record has an
expire time. E.g., 1 day.

– If the record in the cache is expired, the
DNS server has to look up for the record
recursively again.

DNS – Caching and Update

disk
cache

www.pccw.com

www.pccw.com

Spring semester, 2011-2012 CSCI4430S Page 52

• DNS Update

– When the IP address of a name is
updated, what will happen?

– Since every DNS server has its own
cache, the DNS server still uses the
record in cache until it is expired.

DNS – Caching and Update

disk
cache

www.pccw.com

www.pccw.com

www.pccw.com

new record

Spring semester, 2011-2012 CSCI4430S Page 53

• DNS Update

– After the record is expired, the new
record will be retrieved.

– We call this DNS update
propagation.

– This process usually takes a couple
of days to finish.

DNS – Caching and Update

www.pccw.com

new record

disk
cache

www.pccw.com

www.pccw.com

Spring semester, 2011-2012 CSCI4430S Page 54

DNS – Summary

Transport Layout
Protocol

UDP

Has header? Yes.

Header encoding Binary

Content encoding ASCII + Binary

Message exchange Request-response

- client is always the first guy to speak.

Connection duration UDP is “connection-less”; no connection at all.

Let’s do the check using wireshark!

Spring semester, 2011-2012 CSCI4430S Page 55

Application layer
 - Protocol design:
 Learn from examples!
 - HTTP
 - DNS
 - FTP

Spring semester, 2011-2012 CSCI4430S Page 56

FTP – Introduction

• FTP – File Transfer Protocol
– A typical client-server model;

– Goal: to transfer files between the client and the server.

– TCP connection over ports 20 and 21.

– Standard: RFC 959.

FTP
client

local file
system

remote file
system

FTP
server

FTP

Spring semester, 2011-2012 CSCI4430S Page 57

FTP – Features

Requires Login The FTP server reads the password database (i.e., /etc/shadow)
of the server computer.

So, FTP server process must be run by root.

Maintain Status Both the server and the client maintain the login status.

E.g.,

- your identity;

- your working directories on both local and remote side.

Two connections Connection to Port 21: control message.

Connection to Port 20: data transfer.

FTP:21

FTP:20

Spring semester, 2011-2012 CSCI4430S Page 58

FTP – Why 2 connections?

21

Server
Program

File content

Abort
Request

• The catch is: How to abort gracefully?
– Not by killing the client program!

• For example, when the server program is sending a file:
– If using one TCP connection only, the server program will need

to detect
• whether there are abort requests or not, and at the same time,

• writing data to the socket.

– This complicates the implementation.

Spring semester, 2011-2012 CSCI4430S Page 59

FTP – Why 2 connections?

21

File content

Abort
Request

20

• If two connections are used:
– The server program will just need to listen on port 21

for incoming request, using thread A.

– Using thread B to send or receive data.

– Since reading is a blocking call, it won’t take significant
overhead in running thread A.

B

A

Server
Program

Spring semester, 2011-2012 CSCI4430S Page 60

Start TCP Connection

FTP in action

Client
connects
to port 21 Server

Command: USER
sending username

Username OK

Command: PASS
sending password

Welcome

Command: LIST
run /bin/ls please

Spring semester, 2011-2012 CSCI4430S Page 61

End TCP Connection

Start TCP Connection

Start TCP Connection

FTP in action

Client
connects
to port 21

Client
connects
to port 20 Server

Command: USER
sending username

Username OK

Command: PASS
sending password

Welcome

Command: LIST
run /bin/ls please

Data of /bin/ls

Watch Out!

The server ends the
connection.

The same
client machine

Transfer Completes

Watch Out!

The server initiates the
connection.

Use wireshark to see
how it is possible!

Spring semester, 2011-2012 CSCI4430S Page 62

FTP – Summary

Transport Layout
Protocol

FTP

Has header? No.

Command-based communication: (command, content) pair.

Command is terminated by a space.

Content is terminated by a newline character.

Control channel
encoding

ASCII

Data channel encoding Command “ascii” will send data in ASCII only.

Command “binary” will send data in binary only.

Message exchange Persistent & stateful connection.

Connection duration Control channel: until the “bye” command is sent.

Data channel: start on-demand, and close on finishing.

Let’s do the check using wireshark!

Spring semester, 2011-2012 CSCI4430S Page 63

Application layer
 - Protocol design:
 Learn from examples!
 - Socket programming

Spring semester, 2011-2012 CSCI4430S Page 64

Socket programming – basics

• The interface between the
application layer and the
transport layer is system calls?
– Yes!

– But, we have a better name
when working with those
network-related system calls.

– We call it the socket
programming.

Application

Transport

Kernel

User

Client/Server
Program

What is the interface?

Spring semester, 2011-2012 CSCI4430S Page 65

Socket programming – basics

• What is a socket?

– Socket represents a network
resource.

– It is an interface between the
process and the kernel, just like
the role of the file descriptor.

– It is also an interface between
the application layer and the
network layer!

Client/Server
Program

Socket Socket Socket

TCP Control UDP Control

Spring semester, 2011-2012 CSCI4430S Page 66

/bin/ls /usr/bin/less PIPE

Socket programming – basics

• A socket is a dual-pipe!

Data Direction

Web Browser Web Server SOCKET

Data Direction

Spring semester, 2011-2012 CSCI4430S Page 67

Socket programming – basics

• You can read and write on an opened socket.
– When you are writing data, you are sending data to

the remote host.

– When you reading data, you are trying to receive data
from the remote host.

Web Browser Web Server SOCKET

Data Direction

Spring semester, 2011-2012 CSCI4430S Page 68

File System

Socket programming – basics

• Though the underlying layers are handled properly by the kernel,
the application still have tell the FS layer some information.

• E.g., when opening a file:
– an application does not need to handle the FS details, but

– an application has to tell the kernel:
• pathname of the target file, and

• the access mode (read-only, write-only, etc).

Application fd

Attribute #1: mode
e.g., read, write, append, etc

Attribute #2: location
C:\windows, /etc/passwd, etc

File processing example

Spring semester, 2011-2012 CSCI4430S Page 69

Attribute #1: mode

Choice: TCP or UDP?

Attribute #2: location

Destination IP address and port
number.

Networking example

Server socket

Socket programming – basics

• Though the underlying layers are handled properly by the kernel,
the application still have tell the network layer some information.

• When opening a socket:
– an application has to tell the kernel:

• IP address of the target server, and

• Connection mode
– TCP: Reliable connection or UDP: Unreliable connection.

Client socket

Spring semester, 2011-2012 CSCI4430S Page 70

Server socket

Socket programming – basics

Client socket

Socket An application layer entity. It represents a “thing” for connecting two
applications.

Port number A transport layer identifier. It identifies a connection. A port number is
bound to a socket.

An application, e.g., the client, can open more than one port in order to
create more connections.

IP address A network layer identifier. It represents the machine itself, but a
machine can have more than one IP address.

port # port #

IP IP

It may be confusing...

An application program needs
to know identifiers of lower
layers of the opposite side in
order to talk.

Spring semester, 2011-2012 CSCI4430S Page 71

Socket programming – connections

• Many Clients to One Server

socket

port #

socket

port #

socket

port #

socket

port #

The server address and port
number must be well-known,
but not the case for the
clients’ port number & IP
address.

Usually, the guy who
initiates the connection is
the client.

Spring semester, 2011-2012 CSCI4430S Page 72

Socket programming – connections

• Many Clients to One Server

socket

port #

socket

port #

socket

port #

socket

port #

Since a connected socket implies a
connection (TCP only), a client needs
a new socket (and port number) to
make another connection.

socket

port #

Spring semester, 2011-2012 CSCI4430S Page 73

Socket programming – connections

• Many Clients to One Server

socket

port #

socket

port #

socket

port #

socket

port #

The server is always using the same port to accept connections.

The server can differentiate different connection even they’re coming from the
same machine. How?

socket

port #

Network layer is performing a task called
demultiplexing in order to differentiate
connections from each other.

Spring semester, 2011-2012 CSCI4430S Page 74

Socket programming – connections

• Many Clients to One Server

socket

port #

socket

port #

socket

port #

socket

port #

This is the big pictures.

socket

port #

Spring semester, 2011-2012 CSCI4430S Page 75

Socket programming – connections

• Peer-to-Peer.

socket

port #

socket

port #

Every client has an incoming port to
accept connections.

Also, every client has a series of ports
to connect to other clients.

socket

port #

socket

port #

Spring semester, 2011-2012 CSCI4430S Page 76

Programming stuffs...client

Important System calls

Client side Server side

socket()

bind()* bind()

connect() listen() and
accept()

* means optional.

socket() connect()
read()

write()

bind()

Client flow chart

Step (1). [socket()]
- Create a socket.

Step (2). [bind(); optional]
- Assign the socket a port number.
- Skip this step and will have a random port
number assigned.

Step (3). [connect()]
- Connect to the remote server.
- It is a blocking system call.

read() – to receive data.
write() – to send data.
close() – to close the socket

Spring semester, 2011-2012 CSCI4430S Page 77

Programming stuffs...server

Important System calls

Client side Server side

socket()

bind()* bind()

connect() listen() and
accept()

socket() listen() read()

write()

bind()

Server flow chart

Step (1) & Step(2) [you know them now.]

Step (3). [listen()]
- It sets the port to be listening to incoming
connections, for TCP only.

Step (4). [accept()]
- Accept incoming connections.
- A blocking system call.

accept()

read() – to receive data.
write() – to send data.
close() – to close the socket

* means optional.

Spring semester, 2011-2012 CSCI4430S Page 78

Programming stuffs...about accept()

socket() listen()

read() &
write()

bind()

Server flow chart

accept()

Socket FD Socket FD

Socket FD

Socket FD

Accept FD

read() &
write()

Accept FD

An interesting thing about accept() is the creation of a new file descriptor!

Application layer’s point of view.

Good! It provides each connection a new
handler and we can distinguish every
connection!

connection #1

connection #n

Transport layer’s point of view.

Well, for TCP, every FD points to an unique
TCP control structure. It is a necessary for
reliable data transfer!

Spring semester, 2011-2012 CSCI4430S Page 79

Programming stuffs...complete flow?

socket() listen() bind()

Server flow chart

accept()

Application-layer code

connection
is closed.

socket() connect() bind()

Client flow chart

Application-layer code

DONE!

close() exit()

read()
&

write()

Discussion.

Something’s wrong with the
server if this is a “realistic”
HTTP server.

What is the problem?

New connection
arrives

Spring semester, 2011-2012 CSCI4430S Page 80

Programming stuffs...server parallelization

socket() listen() bind()

Server main
flow chart

accept()

Application
-layer code

fork() or pthread_create()

connection
is closed.

exit() or
pthread_exit()

child

parent

Server client-
handler flow
chart

New connection
arrives

Spring semester, 2011-2012 CSCI4430S Page 81

Programming stuffs...read() system call

• A sidetrack:

– Something that we have missed in the OS course...

abc
efg
^D

int main(void) {
 char buf[10];
 int ret;
 while(1) {
 ret = read(fileno(stdin), buf, 10);
 printf("ret = %d bytes.\n", ret);
 if(ret <= 0)
 break;
 write(fileno(stdout), buf, ????);
 }
 printf("bye!\n");
}

Question 1. Can I hard
code the last argument to
10?

Question 2. What is the
program output with the
following input?

Spring semester, 2011-2012 CSCI4430S Page 82

Programming stuffs...read() system call

• A sidetrack:

– Something that we have missed in the OS course...

Remember, kernel does not buffer
the input for you!!
(Not buffered I/O after all)

So, you must check the return
value of the read-related, direct
I/O calls:
 - read(),
 - recv() [similar to read(), but
with lots of useful flags].

Later, we’ll explain this effect from
the angle of TCP control.

int main(void) {
 char buf[10];
 int ret;
 while(1) {
 ret = read(fileno(stdin), buf, 10);
 printf("ret = %d bytes.\n", ret);
 if(ret <= 0)
 break;
 write(fileno(stdout), buf, ret);
 }
 printf("bye!\n");
}

Spring semester, 2011-2012 CSCI4430S Page 83

Application layer
 - Protocol design:
 Learn from examples!
 - Socket programming
 Example: chat room

Spring semester, 2011-2012 CSCI4430S Page 84

Getting real – chat room

• Requirements:
– Only two people are involved. Both people use the

same chat room program.

– The program allows the user to type a message using
the keyboard, and then the program sends that
message to the other side.

– The program is able to receive messages from the
other side, and then displays those messages to the
terminal.

Spring semester, 2011-2012 CSCI4430S Page 85

Getting real – chat room design

Process A Process B

Read
STDIN

Read
Socket

Read
STDIN

Read
Socket

write(): sending Data

write(): sending Data

Keyboard

Keyboard write()
STDOUT

write()
STDOUT

Same program!

Spring semester, 2011-2012 CSCI4430S Page 86

Getting real – chat room design

ret = read(fileno(stdin), buf, size);

write(sock_fd, buf, ret);

ret = read(sock_fd, buf, size);

write(fileno(stdout), buf, ret);

Design A

ret = read(fileno(stdin), buf, size);

write(sock_fd, buf, ret);

ret = read(sock_fd, buf, size);

write(fileno(stdout), buf, ret);

loop

loop

Design B

Discussion.

Which one do you
prefer?

A or B?

Spring semester, 2011-2012 CSCI4430S Page 87

Getting real – chat room with threads?

• Remember, multi-threading is to assign block calls
to different threads.

– But, what if I hate multi-threading? Any Plan B?

Socket

Write
STDOUT

Read
Socket

Read
STDIN

Write
Socket

Thread A

Thread B

Spring semester, 2011-2012 CSCI4430S Page 88

Application layer
 - Protocol design:
 Learn from examples!
 - Socket programming
 - I/O multiplexing

Spring semester, 2011-2012 CSCI4430S Page 89

A New Solution?

• Multi-threading? Or, Multi-processes?
– It works.

– But, have to take care of problems like process
synchronization and mutual exclusion.

• Can I have something like …

file descriptor 1

file descriptor 2

A sensor tells
which file descriptor
has data ready

Spring semester, 2011-2012 CSCI4430S Page 90

I/O Multiplexer – select()

• select() is a system call. It checks if:

– a read() system call on a set of fds will be blocked;

– a write() system call on a set of fds will be blocked;

– there are exceptions on a set of fds.

int select(int nfds,
 fd_set *read_fds, /* fds for read */
 fd_set *write_fds, /* fds for write */
 fd_set *except_fds, /* fds for exceptions */
 struct timevat *timeout); /* timeout period */

fds – file descriptors.

Spring semester, 2011-2012 CSCI4430S Page 91

I/O Multiplexer – select()

• select() is useful in detecting if any one (or ones) of
the set of file descriptors has data ready for reading.

– Therefore, using select() is usually called I/O multiplexing.

– as if to aggregate all the read() system calls into one.

• In our chat room design,

– using select() allows the program to sense which fd(s) has
data ready before the program actually calls read().

Spring semester, 2011-2012 CSCI4430S Page 92

select() – How to Use?

#define STDIN 0

fd_set fds; /* declaration */
FD_ZERO(&fds); /* initialization */
struct timeval tv;

FD_SET(STDIN, &fds); /* select will monitor STDIN */
select(STDIN+1, &fds, NULL, NULL, NULL); /* select is blocked */

FD_SET(STDIN, &fds); /* select will monitor STDIN */
tv.tv_sec = 0; /* set the timeout period to 0 sec */
tv.tv_usec = 0;
select(STDIN+1, &fds, NULL, NULL, &tv); /* select returns immediately */

struct timeval {
 /* second */
 long tv_sec;
 /* micro-second */
 long tv_usec;
};

FD_SET(STDIN, &fds); /* select will monitor STDIN */
tv.tv_sec = 5; /* set the timeout period to 5 sec */
tv.tv_usec = 0;
select(STDIN+1, &fds, NULL, NULL, &tv); /* select returns after 5 sec */

Spring semester, 2011-2012 CSCI4430S Page 93

select()– What is fd_set?

0

0

0

1

0

2

0

3

0 A fd_set variable is an array:

FD_SETSIZE-1

The values are garbage by default.
FD_ZERO() initializes all the values to zero.

1

0

0

1

0

2

0

3

0
The call “FD_SET(0, &fds)”
changes the value of the array
element:

FD_SETSIZE-1

In reality, it is NOT as simple as
changing the value to 1.

file descriptors

Spring semester, 2011-2012 CSCI4430S Page 94

select()– What is fd_set?

1

0

1

1

0

2

1

3

0 After several calls of FD_SET():

FD_SETSIZE-1

The range is 4 elements
although only 3 elements
are set.

int select(int nfds,
 fd_set *read_fds, /* fds for read */
 fd_set *write_fds, /* fds for write */
 fdset *except_fds, /* fds for exceptions */
 struct timevat *timeout); /* timeout period */

the variable “nfds” is
referring to this range

Spring semester, 2011-2012 CSCI4430S Page 95

select()– What is fd_set?

int select(int nfds,
 fd_set *read_fds, /* fds for read */
 fd_set *write_fds, /* fds for write */
 fdset *except_fds, /* fds for exceptions */
 struct timevat *timeout); /* timeout period */

#define MAX(x, y) ((x) > (y) ? (x) : (y))

FD_SET(a, &fds);
FD_SET(b, &fds);
FD_SET(c, &fds);

nfds = MAX(a, MAX(b, c)) + 1;
select(nfds, &fds, NULL, NULL, NULL);

The calculation of nfds.

Spring semester, 2011-2012 CSCI4430S Page 96

select()– What is fd_set?

• fd_set related marcos:

Function (Macro) Description

void FD_CLR(int fd, fd_set *set); It clears the given fd that is set by FD_SET().

int FD_ISSET(int fd, fd_set *set); It checks if the given fd is set in the fd_set
structure. Returns 0 when false; non-zero when
true.

void FD_SET(int fd, fd_set *set); It sets the given fd in the fd_set structure.

void FD_ZERO(fd_set *set); It clears all the fds in the fd_set structure.

Spring semester, 2011-2012 CSCI4430S Page 97

select() – How to Use?

• The return value of select() is useful:
 -1: error of the system call.

 0: nothing has changed when timeout expires.

 otherwise: the number of fds changed.

FD_SET(STDIN, &fds);
tv.tv_sec = 5;
tv.tv_usec = 0;
while(1) {
 rtn = select(STDIN+1, &fds, NULL, NULL, &tv);
 if(rtn == -1) {
 perror(“select()”);
 exit(1)
 }
 if(rtn == 0) {
 printf(“No input after %d sec.\n”, tv.tv_sec);
 }
 else
 break;
}
......

WATCH
OUT!

Spring semester, 2011-2012 CSCI4430S Page 98

select() – How to Use?

• The timeout value will be changed to the remaining time
before select() returns.
– E.g., it becomes 0 when there is no change in the monitored fds.

FD_SET(STDIN, &fds);
while(1) {
 tv.tv_sec = 5;
 tv.tv_usec = 0;

 rtn = select(STDIN+1, &fds, NULL, NULL, &tv);
 if(rtn == -1) {
 perror(“select()”);
 exit(1)
 }
 if(rtn == 0) {
 printf(“No input after %d sec.\n”, tv.tv_sec);
 }
 else
 break;
}
......

moved
inside the
while loop.

Spring semester, 2011-2012 CSCI4430S Page 99

select() – How to Use?

• The fd_set variable will also be changed by the
select() system call.
– If the monitored fds has changed, it will be set.

– Otherwise, it is not set.
while(1) {
 FD_SET(STDIN, &fds);
 tv.tv_sec = 5;
 tv.tv_usec = 0;

 rtn = select(STDIN+1, &fds, NULL, NULL, &tv);
 if(rtn == -1) {
 perror(“select()”);
 exit(1)
 }
 if(rtn == 0) {
 printf(“No input after %d sec.\n”, tv.tv_sec);
 }
 else
 break;
}
......

moved
inside the
while loop.

Spring semester, 2011-2012 CSCI4430S Page 100

Change in Chat Room Design

Read
STDIN

Read
Socket

Execute
select()

Keyboard

Socket

The select() system call is
blocked until data is
detected on either one of
the file descriptors.

The flow of control is decided by
the value set by select().

Spring semester, 2011-2012 CSCI4430S Page 101

Change in Chat Room Design

Read
STDIN

Read
Socket

Execute
select()

Keyboard

Socket Data

When data is available on
the socket, the select()
system call will detect that
data is available.

“FD_ISSET(0, &fds)”
should be false.

The read() system call
becomes “blocking-free”.

“FD_ISSET(socket_fd, &fds)”
should be true.

Spring semester, 2011-2012 CSCI4430S Page 102

I/O multiplexing – summary

• It should be used with great care...

Read
STDIN

Read
Socket

Execute
select()

Keyboard

Socket Endless Stream?

Block for a long long time...

Discussion: any ways to resolve?

Spring semester, 2011-2012 CSCI4430S Page 103

Application layer
 - Protocol design:
 Learn from examples!
 - Socket programming
 - I/O multiplexing
 - Case study:
 Apache server

Spring semester, 2011-2012 CSCI4430S Page 104

Apache server

• This is the state-of-the-art, open source, HTTP
server.

• Our focus: performance!

– How can Apache support thousands of connections?

• Ingredients:

– fork(), pthread_create(), pipe(),
select().

Spring semester, 2011-2012 CSCI4430S Page 105

Scalability and Limitation

• Using threads alone?
– Do you still remember what you’ve learnt in 3150?

• Addressing space limits the number of threads created.

• There is also a limit on the number of opened files (i.e.,
connections) per processes.

A Bad
solution!

accept() only

socket

port 80

pthread_
create()

Spring semester, 2011-2012 CSCI4430S Page 106

accept() only

Scalability and Limitation

• Using processes alone?
– Do you still remember what you’ve learnt in 3150?

• The number of processes available is limited.

• A heavy burden on memory consumption.

socket

port 80
P

P

P

Not-so-bad
solution!

P fork()

Spring semester, 2011-2012 CSCI4430S Page 107

Apache’s approach – Step (1)

• fork() + pthread_create()

Worker #1

Parent

port 80

First request

fork()

Handle first request

listen socket

Spring semester, 2011-2012 CSCI4430S Page 108

Second request

Apache’s approach – Step (2)

• fork() + pthread_create()

Worker #1

Parent

port 80
Job has
arrived!

Handle first request

Handle second request
listen socket

Spring semester, 2011-2012 CSCI4430S Page 109

nth request

Apache’s approach – Step (3)?

• fork() + pthread_create()

Parent

port 80
Sorry, P1
is full

There are several reasons for a worker to reject a request:

listen socket

Worker #1

There are several reasons for a worker to reject a request:

(1) All FDs are used up!
(2) No more threads are available!

Spring semester, 2011-2012 CSCI4430S Page 110

nth request

Apache’s approach – Step (3)!

• fork() + pthread_create()

Worker #1

Parent

port 80
Sorry, P1
is full

Worker #i

fork()

Handle nth request Concern #1. Who call accept()?

Concern #2. Is IPC needed?

listen socket

Spring semester, 2011-2012 CSCI4430S Page 111

Apache’s approach – concern #1

• Where is accept()?

Worker #1

Parent listen socket

port 80

Worker #i

Should I call
accept()?

No! accept() produces a file descriptor for the caller process only.
P1 and P2 cannot use the new file descriptor!

Obviously, P1 and P2 call accept()! Either one calls or both call?

Spring semester, 2011-2012 CSCI4430S Page 112

Apache’s approach – concern #1

• Where is accept()? Get help from select()!

Worker #1

Parent listen socket

port 80

P2

Hey, a task
for you

- Using select() is to detect if any request arrives at the listen socket.

- Since fork() is used, P1 and P2 both have the listen socket. So, both can call accept()!

select()

accept()

Spring semester, 2011-2012 CSCI4430S Page 113

Apache’s approach – concern #2

• How about the IPC? Many ways! E.g.,
– 2 uni-directional pipes;

– 1 socket between two processes, etc.

• Basically, the IPC has to guarantee two things:
– The parent process can ask a worker process to take

the task, and

– The worker process may reject an assigned task, e.g.,
max. # of threads reached!

• Or, the management is in the parent’s hand.

• It’s up to your implementation!

Spring semester, 2011-2012 CSCI4430S Page 114

Do you want to know more?

• It provides such a service using a module called
Multi-Processing Module, MPM.

– Two modes: prefork and worker.

Prefork Non-threading, processes only.

Worker Processes with threads.

http://httpd.apache.org/docs/2.0/mod/prefork.html

http://httpd.apache.org/docs/2.0/mod/worker.html

http://httpd.apache.org/docs/2.0/mod/prefork.html
http://httpd.apache.org/docs/2.0/mod/worker.html

