
Advanced topic: Space complexity
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong

1/28



Review: time complexity

We have looked at how long it takes to solve various problems

P

NP

•L01
•PATH

•CLIQUE •SAT

•IS •VC

What about the amount of memory?

We measure memory usage (space) by the number of tape cells used

Questions one may ask:

If a problem can be solved quickly, can it be solved with little
memory?

If a problem can be solved with little memory, can it be solved
quickly?

2/28



Space complexity

The space complexity of a Turing machine M is the function sM(n):

sM(n) = maximum number of cells that M ever reads
on any input of length n

Example: L = {w#w | w ∈ {a,b}∗}

M : On input x , until you reach #
Read and cross of first a or b before #
Read and cross off first a or b after #
If mismatch, reject

If all symbols except # are crossed off, accept
space complexity: n + 1

“+1” because M may scan the blank symbol after the input
3/28



Sublinear space

If we assume the Turing machine has two tapes

1. Input tape: contains the input and is read-only
2. Work tape: initially empty, only the cells used here is counted

We will assume this in this lecture

Then L can be solved in O(log n) space

L = {w#w | w ∈ {a,b}∗}

Idea: Keep a counter, storing the number of symbols matched so far

Counter can represent a number of size m in using O(logm) bits

4/28



Logarithmic space

Smallest reasonable amount of space used will be logarithmic in
input length

Just keeping one counter/pointer requires log n memory!

A language L is in L if L can be decided by a deterministic Turing
machine (with read-only input tape) in O(log n) space

5/28



Time vs space

If a Turing machine runs in time tM(n), how much space can it use?

At most as much space as the number of time steps

sM(n) 6 tM(n)

If a Turing machine uses space sM(n), how long can it take?

At most exponential time in the amount of space used

tM(n) 6 2O(sM (n)) if sM(n) > log n

Reason:

Constant number of possibilities (say K ) for each tape symbol

n possible input head locations

sM(n) possible work head locations

Total number of configurations 6 nsM(n)K sM (n) 6 2O(sM (n)) if
sM(n) > log n

6/28



Time vs space

If a Turing machine runs in time tM(n), how much space can it use?

At most as much space as the number of time steps

sM(n) 6 tM(n)

If a Turing machine uses space sM(n), how long can it take?

At most exponential time in the amount of space used

tM(n) 6 2O(sM (n)) if sM(n) > log n

Reason:

Constant number of possibilities (say K ) for each tape symbol

n possible input head locations

sM(n) possible work head locations

Total number of configurations 6 nsM(n)K sM (n) 6 2O(sM (n)) if
sM(n) > log n

6/28



PATH

PATH = {〈G, s, t〉 | Directed graph G has a directed path
from node s to node t}

As we will see, an important problem for space complexity

How much space is required for solving PATH?

BFS or DFS uses > n space (n = |V (G)|)

We don’t know how to solve PATH in O(log n) space, but we can solve
it in O((log n)2) space

7/28



PATH in (log n)2 space

Main idea: Recursion!

If t is reachable from s, must be reachable within n − 1 steps

Solve the question “Is v reachable from u within k steps?” recursively

Try all intermediate nodes w and asks

“Is w reachable from u within k/2 steps?”

“Is v reachable from w within k/2 steps?”

If answer is YES to both sub-questions for some w, then v reachable
from u within k steps

8/28



Savitch’s algorithm

Recursively answer “Can u reach v within k steps?”

Algorithm 1 Path(u, v, k)
if k = 0 then
return whether u = v

else if k = 1 then
return whether (u, v) ∈ E

end if
for every vertex w do
if Path(u, w, bk/2c) and Path(w, v, dk/2e) then
return true

end if
end for
return false

9/28



PATH in (log n)2 space

Depth of recursion: O(log n)

Additional memory for each level: O(log n)

to remember the intermediate node for this level

unlike time, space can be reused!

Overall space used: O((log n)2)

10/28



Aside: repeated squaring

To compute An , how many multiplications required?

To compute An :

If n = 0, return 1

If n is even, recursively compute B = An/2 and return B2

If n is odd, retursively compute B = A(n−1)/2 and return B2 · B

O(log n) multiplications

When A is the adjacency matrix and not a scalar

repeated squaring is analogous to previous algorithm for PATH

11/28



Nondeterministic log-space

Why is PATH important?

Analogous to P vs NP, we can consider the nondeterministic analog
of L and asks L vs NL

A language L is in NL if L can be decided by a nondeterministic
Turing machine (with read-only input tape) in O(log n) space

12/28



NL-completeness

A language B is NL-complete if
1. B is in NL; and
2. every language A in NL log-space reduces to B

We consider log-space reductions, because polynomial-time
reductions are too coarse

Theorem
PATH is NL-complete

L

NL

•
•

• •

•PATH •

Assuming L 6= NL
13/28



PATH is NL-complete

PATH is in NL:

Nondeterministic Turing machine guesses a path from s to t

More precisely, the machine remembers the current node on the
path and guesses the next node

PATH is NL-hard:

For any language A in NL

Let N be a log-space nondeterministic Turing machine for A

Construct the directed graph G whose vertices are configurations of
N

Let s be the initial configuration and t be the accepting configuration

14/28



PATH is NL-hard: details

Listing all sN(n) nodes/configurations can be done with O(sN(n))
space

Checking whether one configuration leads to another (whether one
node has an edge to another) can be done in O(sN(n)) space

Since sN(n) = O(log n),

constructing 〈G, s, t〉 can be done in O(log n) space

By modifying N , we may assume its accepting configuration is unique

15/28



Caveat and consequences

Recall: NP = set of languages having polynomial-time verifier

A similar definition (with log-space verifier) is not unlikely to be true
for NL

Intuitively, NL machines do not have enough memory to remember
all nondeterministic choices

Since PATH is NL-complete and can be solved in O((log n)2) spaces

Every problem in NL can be solved in O((log n)2) space!

(Savitch’s theorem)

Even though we believe NP-complete problems takes exponential
amount of time compared to P problems, space is another story

16/28



Hierarchy theorems

17/28



Hierarchy theorem

Given more space, can Turing machines/algorithms solve more
problems?

Are there problems solvable in n3 space but not in n2 space?

Given any “nice” function f : N → N, there is a language decidable in
O(f (n)) space but not in o(f (n)) space

For example, n3, log n,n log n will be “nice”

(If a function does not always take integer values, such as log n, we
consider rounding down the output to an integer)

18/28



Space-constructible functions

Technical definition of “nice” is space-constructible

A function f : N → N, where f (n) > log n, is space-constructible if the
function mapping an input w of length n to the binary representation

of f (n) is computable by a Turing machine in space O(f (n)).

Space hierarchy theorem is therefore

Given any space-constructible function f : N → N, there is a
language decidable in O(f (n)) space but not in o(f (n)) space

19/28



Corollary

For any a < b, there are functions computable in space O(nb) but not
in space O(na)

Statement is intuitive

Hardest part: proving that all Turing machines with less space fails to
solve a problem

20/28



The “difficult” problem

L = {〈M ,w〉 | Turing machine M rejects 〈M ,w〉 in space 6 f (n)
n = |〈M ,w〉|}

Need to show

1. L cannot be decided in space o(f (n))
2. L can be decided in space O(f (n))

An artifical problem

For technical reason, we assume the Turing machines M have
constant-sized tape alphabet (such as 4), independent of n

21/28



Not solvable in space o(f (n))

L = {〈M ,w〉 | Turing machine M rejects 〈M ,w〉 in space 6 f (n)
n = |〈M ,w〉|}

Proof by contradiction

Suppose L can be decided in space o(f (n)) by a Turing machine D

What happens if M = D and w is very long?

When w is very long, n is big, and o(f (n)) will be smaller than f (n)

22/28



Not solvable in space o(f (n))

L = {〈M ,w〉 | Turing machine M rejects 〈M ,w〉 in space 6 f (n)
n = |〈M ,w〉|}

Case 1: If D accepts 〈D,w〉

then 〈D,w〉 ∈ L (because D decides L)

hence D rejects 〈D,w〉 (by definition of L)

Case 2: If D rejects 〈D,w〉

then 〈D,w〉 /∈ L (because D decides L)

hence D doesn’t reject 〈D,w〉 (by definition of L)

Since D decides L, D accepts 〈D,w〉

Combining two cases⇒ contradiction
23/28



Solvable in space O(f (n))

L = {〈M ,w〉 | Turing machine M rejects 〈M ,w〉 in space 6 f (n)
n = |〈M ,w〉|}

Idea: simulate M

Since M is supposed to use only 6 f (n) space

Simulation can be done using O(f (n)) space

Keeping track of M ’s states takes O(log n) space

If M tries to use more than f (n) space, aborts simulation and rejects

Here we use the assumption that f (n) is space-constructible

Simulator needs to know how much tape space to allocate for
simulating M

24/28



Solvable in space O(f (n))

L = {〈M ,w〉 | Turing machine M rejects 〈M ,w〉 in space 6 f (n)
n = |〈M ,w〉|}

Idea: simulate M

Challenge: M may infinite-loop on 〈M ,w〉

Solution:

Computation in space f (n) goes through 2O(f (n)) configurations

If the same configuration appears twice, M loops indefinitely

When simulating M , keeps track of the number of steps

If it exceeds 2O(f (n)), simulator rejects

This counter takes up additional O(f (n)) space
25/28



Conclusion

L = {〈M ,w〉 | Turing machine M rejects 〈M ,w〉 in space 6 f (n)
n = |〈M ,w〉|}

1. L cannot be decided in space o(f (n)) 3

2. L can be decided in space O(f (n)) 3

Why this artifical problem?

26/28



Diagonalization

L = {〈M ,w〉 | Turing machine M rejects 〈M ,w〉 in space 6 f (n)
n = |〈M ,w〉|}

Need a problem not solvable by all Turing machines that runs in
o(f (n)) space

That’s why L involves Turing machines running in small space

27/28



Time hierarchy

Similar theorem for time complexity

Given any time-constructible function f : N → N, there is a language
decidable in O(f (n)) time but not in o(f (n)/ log n) time

A function f : N → N, where f (n) > n log n, is time-constructible if the
function mapping an input w of length n to the binary representation

of f (n) is computable by a Turing machine in time O(f (n)).

L = {〈M ,w〉 | Turing machine M rejects 〈M ,w〉 in 6 f (n)/ log n time
n = |〈M ,w〉|}

Proof follows similar high-level strategy

1. L cannot be decided in o(f (n)/ log n) time
2. L can be decided in O(f (n)) time

28/28


