
Cook–Levin Theorem
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong

1/18



NP-completeness

NP-complete

P

NP

•PATH
•L01

•

•

•SAT •IS

•Clique
Theorem (Cook–Levin)

Every language in NP
polynomial-time reduces to

SAT

2/18



Cook–Levin theorem

Every L ∈ NP polynomial-time reduces to SAT

Need to find a polynomial-time reduction R such that

L SAT

z R Boolean formula ϕ

z ∈ L ←→ ϕ is satisfiable

3/18



NP-completeness of SAT

All we know: L has a polynomial-time verifier V

V 0110#10
z s

z ∈ L if and only if
V accepts 〈z, s〉 for some s

Tableau of computation history of
V

q0 0 1 1 0 # 1 0 �
0 q1 1 1 0 # 1 0 �

...

1qacc 0 …

T

S

4/18



Tableau of computation history

q0 0 1 1 0 # 1 0 �
0 q1 1 1 0 # 1 0 �

...

1qacc 0 …

T

S

u

n = length of z

height of tableau is O(nc) for
some constant c

width of tableau is O(nc)

k possible tableau symbols

xT,S,u =

{
True if cell (T ,S) contains symbol u
False otherwise

5/18



Reduction to SAT

L SAT

z R Boolean formula ϕ

z ∈ L ←→ ϕ is satisfiable

Will design a formula ϕ such that

variables of ϕ xT,S,u

assignment to xT,S,u ≈ assignment to tableau symbols
satisfying assignment ↔ accepting computation history
ϕ is satisfiable ↔ V accepts 〈z, s〉 for some s

6/18



Reduction to SAT

Will construct in O(n2c) time a formula ϕ such that
ϕ(x) is True precisely when the assignment to {xT,S,u} represents

legal and accepting computation history

ϕ = ϕcell ∧ ϕinit ∧ ϕmove ∧ ϕacc

ϕcell : Exactly one symbol in each
cell
ϕinit : First row is q0z#s for some s
ϕmove : Moves between adjacent
rows follow the transitions of V
ϕacc : Last row contains qacc

q0 0 1 1 0 # 1 0 �
0 q1 1 1 0 # 1 0 �

...

1qacc 0 …

7/18



ϕcell : exactly one symbol per cell

ϕcell = ϕcell,1,1 ∧ · · · ∧ ϕcell,#rows,#cols where

ϕcell,T,S = (xT,S,1 ∨ · · · ∨ xT,S,k) at least one symbol

∧(xT,S,1 ∧ xT,S,2)

∧(xT,S,1 ∧ xT,S,3)
...

∧(xT,S,k−1 ∧ xT,S,k)

 no two symbols in one cell

8/18



ϕinit and ϕacc

First row is q0z#s for some s

ϕinit = x1,1,q0 ∧ x1,2,z1 ∧ · · · ∧ x1,n+1,zn ∧ x1,n+2,#

Last row contains qacc somewhere

ϕacc = x#rows,1,qacc ∨ · · · ∨ x#rows,#cols,qacc

9/18



Legal and illegal transitions windows

legal windows illegal windows
…
…

abx
abx

…
…

…
…

q3ab
abq3

…
…

…
…

aq3a
q6ax

…
… q3

q6

a/xL

…
…

q3q3a
q3q3x

…
…

…
…

aba
abq6

…
…

…
…

aq3a
q6ab

…
…

…
…

aa�
xa�

…
…

…
…

aq3a
aq6x

…
…

10/18



ϕmove : moves between rows follow transitions of V

q0 0 1 1 0 # 1 0 �
0 q1 1 1 0 # 1 0 �

a1 a2 a3

b1 b2 b3

1qacc 0 …

ϕmove = ϕmove,1,1 ∧ · · · ∧ ϕmove,#rows−1,#cols−2

ϕmove,T,S =
∨

legal
a1a2a3
b1b2b3

(
xT,S,a1 ∧ xT,S+1,a2 ∧ xT,S+2,a3∧

xT+1,S,b1 ∧ xT+1,S+1,b2 ∧ xT+1,S+2,b3

)

11/18



NP-completeness of SAT

z R Boolean formula ϕ

z ∈ L ←→ ϕ is satisfiable

Let V be a polynomial-time verifier for L

R = On input z ,

1. Construct the formulas ϕcell, ϕinit, ϕmove, ϕacc
2. Output ϕ = ϕcell ∧ ϕinit ∧ ϕmove ∧ ϕacc

R takes time O(n2c)

V accepts 〈z, s〉 for some s if and only if ϕ is satisfiable

12/18



NP-completeness: More
examples



Cover for triangles

k-cover for triangles: k vertices that touch all triangles

Has 2-cover for triangles?
Yes

Has 1-cover for triangles?
No, it has two vertex-disjoint triangles

TRICOVER = {〈G, k〉 | G has a k-cover for triangles}

TRICOVER is NP-complete

13/18



Step 1: TRICOVER is in NP

What is a solution for TRICOVER?
A subset of vertices like {D, F}

V = On input 〈G, k,S〉, where S is a set of k
vertices
1. For every triple (u, v,w) of vertices:

If (u, v), (v,w), (w, u) are all edges in G:
If none of u, v,w are in S , reject

2. Otherwise, accept

Running time = O(n3)

A B
C

E G

D

F

14/18



Step 2: Some NP-hard problem reduces to TRICOVER

VC = {〈G, k〉 | G has a vertex cover of size k}

Some vertex in every edge is covered

TRICOVER = {〈G, k〉 | G has a k-cover for triangles}

Some vertex in every triangle is covered

Idea: replace edges by triangles

R−→

vertex cover in G cover for triangles in G′

15/18



VC polynomial-time reduces to TRICOVER

R = On input 〈G, k〉, where graph G has n vertices and m edges,

1. Construct the following graph G′:
G′ has n + m vertices:

v1, . . . , vn are vertices from G
introduce a new vertex uij for every edge (vi, vj) of G

For every edge (vi, vj) of G:
include edges (vi, vj), (vi, uij), (uij, vj) in G′

2. Output 〈G′, k〉

Running time is O(n + m)

16/18



Step 3: Argue correctness (forward)

〈G, k〉 ∈ VC ⇒ 〈G′, k〉 ∈ TRICOVER

⇒

G has a k-vertex cover S G′ has a k-triangle cover S
old triangles from G are covered
new triangles in G′ also covered

17/18



Step 3: Argue correctness (backward)

〈G, k〉 ∈ VC ⇐ 〈G′, k〉 ∈ TRICOVER

⇐

G has a k-vertex cover S ′ G′ has a k-triangle cover S

S ′ is obtained after moving
some vertices of S

Some vertices in S may not
come from G!

Since S ′ covers all triangles
in G′, it covers all edges in G

But we can move them and
still cover the same triangle

18/18


	NP-completeness: More examples

