Cook–Levin Theorem

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2019

Chinese University of Hong Kong

NP-completeness

Theorem (Cook–Levin)

Every language in NP polynomial-time reduces to SAT

Every *L* ∈ NP polynomial-time reduces to SAT

Need to find a polynomial-time reduction *R* such that

NP-completeness of SAT

All we know: *L* has a polynomial-time verifier *V*

z ∈ *L* if and only if *V* accepts $\langle z, s \rangle$ for some *s*

Tableau of computation history

Will design a formula φ such that

variables of φ *x*_{*T*,*S*,*u*}

- assignment to $x_{T,S,u} \approx$ assignment to tableau symbols
- satisfying assignment \leftrightarrow accepting computation history
- φ is satisfiable \leftrightarrow *V* accepts $\langle z, s \rangle$ for some *s*

Will construct in $O(n^{2c})$ time a formula φ such that $\varphi(x)$ is True precisely when the assignment to $\{x_{T,S,u}\}$ represents legal and accepting computation history

 $\varphi = \varphi_{\text{cell}} \wedge \varphi_{\text{init}} \wedge \varphi_{\text{move}} \wedge \varphi_{\text{acc}}$

 φ_{cell} : Exactly one symbol in each cell

 φ _{init}: First row is q_0z #*s* for some *s* φ _{move}: Moves between adjacent rows follow the transitions of *V* φ_{acc} : Last row contains q_{acc}

$$
\varphi_{cell} = \varphi_{cell,1,1} \wedge \cdots \wedge \varphi_{cell, \text{Hrows}, \text{Hcols}}
$$
 where

$$
\varphi_{\text{cell},T,S} = (x_{T,S,1} \lor \cdots \lor x_{T,S,k}) \quad \text{at least one symbol}
$$
\n
$$
\land \frac{(\overline{x_{T,S,1}} \land \overline{x_{T,S,2}})}{\land (\overline{x_{T,S,1}} \land \overline{x_{T,S,3}})}
$$
\n
$$
\vdots
$$
\n
$$
\land \frac{(\overline{x_{T,S,1}} \land \overline{x_{T,S,3}})}{(\overline{x_{T,S,k-1}} \land \overline{x_{T,S,k}})}
$$
\nno two symbols in

one cell

First row is $q_0 z \# s$ for some *s*

$$
\varphi_{init} = x_{1,1,q_0} \wedge x_{1,2,z_1} \wedge \cdots \wedge x_{1,n+1,z_n} \wedge x_{1,n+2,\sharp}
$$

Last row contains q_{acc} somewhere

 $\varphi_{\text{acc}} = x_{\text{Hrows},1,q_{\text{acc}}} \vee \cdots \vee x_{\text{Hrows},\text{Hcols},q_{\text{acc}}}$

Legal and illegal transitions windows

φ _{move} : moves between rows follow transitions of *V*

$$
\varphi_{move} = \varphi_{move,1,1} \wedge \cdots \wedge \varphi_{move, \text{Hrows}-1, \text{Hcols}-2}
$$

$$
\varphi_{\text{move},T,S} = \bigvee_{\text{legal}\left(\frac{a_1a_2a_3}{b_1b_2b_3}\right)} \left(x_{T+1,S,b_1} \wedge x_{T+1,S+1,b_2} \wedge x_{T+1,S+2,b_3} \wedge x_{T+1,S+2,b_4} \right)
$$

NP-completeness of SAT

Let *V* be a polynomial-time verifier for *L*

 $R =$ On input z ,

- 1. Construct the formulas $\varphi_{\text{cell}}, \varphi_{\text{init}}, \varphi_{\text{move}}, \varphi_{\text{acc}}$
- 2. Output $\varphi = \varphi_{cell} \wedge \varphi_{init} \wedge \varphi_{move} \wedge \varphi_{acc}$

R takes time $O(n^{2c})$

V accepts $\langle z, s \rangle$ for some *s* if and only if φ is satisfiable

[NP-completeness: More](#page-12-0) [examples](#page-12-0)

k-cover for triangles: *k* vertices that touch all triangles

Has 2-cover for triangles? Yes

Has 1-cover for triangles? No, it has two vertex-disjoint triangles

TRICOVER = $\{G, k\}$ | *G* has a *k*-cover for triangles}

TRICOVER is NP-complete

What is a solution for TRICOVER? A subset of vertices like {D, F}

 $V =$ On input $\langle G, k, S \rangle$, where *S* is a set of *k* vertices

- 1. For every triple (u, v, w) of vertices: If $(u, v), (v, w), (w, u)$ are all edges in *G*: If none of *u*, *v*, *w* are in *S*, *reject*
- 2. Otherwise, *accept*

Running time = $O(n^3)$

 $VC = \{\langle G, k \rangle \mid G \text{ has a vertex cover of size } k\}$

Some vertex in every edge is covered

TRICOVER = $\{G, k\}$ | *G* has a *k*-cover for triangles}

Some vertex in every triangle is covered

Idea: replace edges by triangles

 $R =$ On input $\langle G, k \rangle$, where graph *G* has *n* vertices and *m* edges,

1. Construct the following graph G' :

 G' has $n + m$ vertices: v_1, \ldots, v_n are vertices from G

introduce a new vertex u_{ij} for every edge (v_i,v_j) of G For every edge (v_i, v_j) of G :

 i include edges $(v_i, v_j), (v_i, u_{ij}), (u_{ij}, v_j)$ in G'

2. Output $\langle G', k \rangle$

Running time is $O(n + m)$

$\langle G, k \rangle \in \mathsf{VC} \Rightarrow \langle G', k \rangle \in \mathsf{TRICOVER}$

old triangles from *G* are covered new triangles in G' also covered

 $\langle G, k \rangle \in \mathsf{VC} \quad \Leftarrow \quad \langle G', k \rangle \in \mathsf{TRICOVER}$

⇐

S^I is obtained after moving some vertices of *S*

Since S' covers all triangles in G' , it covers all edges in G

Some vertices in *S* may not come from *G*!

But we can move them and still cover the same triangle