NP-completeness
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong

1/30

Polynomial-time reductions

What we say
“INDEPENDENT-SET is at least as hard as CLIQUE"

What does that mean?

We mean

If CLIQUE cannot be decided by a polynomial-time Turing machine,
then neither does INDEPENDENT-SET

If INDEPENDENT-SET can be decided by a polynomial-time Turing
machine, then so does CLIQUE

Similar to the reductions we saw in the past 4-5 lectures, but with
the additional restriction of polynomial-time

2/30

Polynomial-time reductions

Cuaque = {(G, k) | G is a graph having a clique of k vertices}
INDEPENDENT-SET = {(G, k) | G is a graph having

an independent set of k vertices}

Theorem

If INDEPENDENT-SET has a polynomial-time Turing machine, so does
CLIQUE

3/30

Polynomial-time reductions

If INDEPENDENT-SET has a polynomial-time Turing machine, so does
CLIQUE

Proof

Suppose INDEPENDENT-SET is decided by a poly-time TM A4

We want to build a TM S that uses A to solve CLIQUE

(G, k)

accept if G has
aclique ofsize k

reject otherwise

4/30

Reducing CLIQUE to INDEPENDENT-SET

We look for a polynomial-time Turing machine R that turns the
question

“Does G have a clique of size k?”
into

“Does G’ have an independent set (IS) of size k¥'?"

Q @
‘ fip all edges
o ®
Graph G Graph G’
clique of size k =k IS of size k'

5/30

Reducing CLIQUE to INDEPENDENT-SET

On input (G, k)

Construct G’ by flipping all edges
of @ (G, k) H (@ k)

Setk' =k
Output (G', k')

Cliqguesin G +— Independentsetsin G’

- If G has a clique of size k
then G’ has an independent set of size k

- If G does not have a clique of size k
then G’ does not have an independent set of size k

6/30

Reduction recap

We showed that

If INDEPENDENT-SET is decidable by a polynomial-time Turing
machine, so is CLIQUE

by converting any Turing machine for INDEPENDENT-SET into one for
CLIQUE

To do this, we came up with a reduction that transforms instances of
CLIQUE into ones of INDEPENDENT-SET

7/30

Polynomial-time reductions

Language L polynomial-time reduces to L’ if

there exists a polynomial-time Turing machine R that takes an
instance z of L into an instance y of L' such that

ze€ Lifandonlyifye L’

CLIQUE IS
L I
-
z= (G, k) y=(G". k)
zeL ye L
G has a clique of size k G’ has an IS of size k

8/30

The meaning of reductions

L reduces to L' means L is no harder than L’

If we can solve L/, then we can also solve L

Therefore

If L polynomial-time reducesto L' and L’ € P, then L € P

. R Yy poly-time e
T™ for L’ rej ect

Tz €L ye L TM accepts

9/30

Direction of reduction

Pay attention to the direction of reduction
“A‘is no harder than B” and “B is no harder than A”

have completely different meanings

It is possible that L reduces to L’ and L’ reduces to L

That means L and L’ are as hard as each other

For example, IS and CLIQUE reduce to each other

10/30

Boolean formula satisfiability

A boolean formula is an expression made up of variables, ANDs, ORs,
and negations, like

0= (21 VI2) A (22 VI3V x4) A (Z1)

Task: Assign TRUE/FALSE values to variables so that the formula
evaluates to true

e.g. 7 =[P it = P 3 =1 g =T

Given a formula, decide whether such an assignment exist

11/30

3SAT

SAT = {{¢) | ¢ is a satisfiable Boolean formula}
3SAT = {{¢) | ¢ is a satisfiable Boolean formula
conjunctive normal form with 3 literals per clause}

literal: 2; O Z;
Conjuctive Normal Form (CNF): AND of ORs of literals
3CNF: CNF with 3 literals per clause (repetitions allowed)

(T1 Vip VIT2) A (T2 V a3 V 24)
~~ —_———

literal clause

12/30

3SAT is in NP

0= (21 VI2) A (22 VI3V x4) A (Z1)

Finding a solution: Verifying a solution:
Try all possible assignments substitute

FFFF FTFF TFFF TIFF zm=F z;=F

FFFT FTFT TFFT TTFT Ta=T @=T

FFTF FTTF TFTF TTTF evaluating the formula

FETT FTTT TFTT TTTT e=(FVT)IA(FVFEVT) A()
For n variables, there are 2" can be done in linear time

possible assignments
Takes exponential time

13/30

Cook-Levin theorem

Every L € NP polynomial-time reduces to SAT

SAT = {(p) | ¢ is a satisfiable Boolean formula}

eg o= (21 VI2) A (22 VT3V ay)A(T1)
Every problem in NP is no harder than SAT

But SAT itself is in NP, so SAT
must be the “hardest problem”
in NP

If SAT € P, then P = NP

14/30

NP-completeness

A language L is NP-hard if:

For every N in NP, N polynomial-time reduces to L

A'language L is NP-complete if L is in NP and L is NP-hard

Cook-Levin theorem

SAT is NP-complete

15/30

Our (conjectured) picture of NP

P-complete

QUE

A — B: A polynomial-time reduces to B

In practice, most NP problems are either in P (easy) or NP-complete
(probably hard)

16/30

Interpretation of Cook-Levin theorem

Optimistic:

If we manage to solve SAT, then we can also solve CLIQUE and many
other

Pessimistic:

Since we believe P # NP, it is unlikely that we will ever have a fast
algorithm for SAT

17/30

Ubiquity of NP-complete problems

We saw a few examples of NP-complete problems, but there are
many more

Surprisingly, most computational problems are either in P or
NP-complete

By now thousands of problems have been identified as NP-complete

18/30

Reducing IS to VC
- @

G hasanlISofsize k +— G’ hasaVCofsize ¥

Example
Independent sets: vertex covers:
@ @
0,{1},{2}, {3}, {4}, ‘ {2,4},{3,4},
{1,2},{1,3} N {1,2,3},{1,2,4},

—®

{1,3,4},{2,3,4},
{1,2,3,4}

19/30

Reducing IS to VC

Claim OO
S'is an independent set if and ‘
only if S is a vertex cover G—®
Proof: IS Ve
S'is an independent set 0 {1,2,3,4}
" m {234
no edge has both endpoints in S {2} {1,3,4}
T {3} {1,2,4}
every edge has an endpoint in S {4} {1,2,3}
i) {1,2} {3,4}
S is a vertex cover {13 {2,4}

20/30

Reducing IS to VC
oo T @
R: On input (G, k)

Output (G, n — k)

G hasanl|Sofsizek +— GhasaVCofsizen—k

Overall sequence of reductions:

SAT —s 3SAT —s CLIQUE % 1S % VC

21/30

Reducing 3SAT to CLIQUE

3SAT = {¢ | ¢ is a satisfiable Boolean formula in 3CNF}
CuiQue = {(G, k) | G is a graph having a clique of k vertices}

3CNF formula ¢ (G, k)

p is satisfiable +— G has a clique of size k

22/30

Reducing 3SAT to CLIQUE

Example:

o=@ Vo V)@ VI VI) A (T V2V 13)

One vertex for each literal occurrence

One edge for each consistent pair (non-opposite literals)

23/30

Reducing 3SAT to CLIQUE
3CNF formula ¢ (G, k)

R: On input ¢, where ¢ is a 3CNF formula with m clauses
Construct the following graph G:
G has 3m vertices, divided into m groups
One for each literal occurrence in ¢
If vertices u and v are in different groups and consistent
Add an edge (u,v)
Output (G, m)

24/30

Reducing 3SAT to CLIQUE
3CNF formula ¢ (G, k)

p is satisfiable +— G has a clique of size m

Y = ((L’l\/l'l\/l‘z) A\ (fl V To \/fz) A\ (fl\/fl‘z\/x;;)
T T F F T T F F T

25/30

Reducing 3SAT to CLIQUE: Summary
3CNF formula ¢ (G, k)

Every satisfying assignment of ¢ gives a clique of size m in G

Conversely, every clique of size m in G gives a satisfying assignment
of p

Overall sequence of reductions:

SAT — 3SAT % CLIQUE 5 1S % VC

26/30

SAT and 3SAT

SAT = {¢ | ¢ is a satisfiable Boolean formula}

e.g. ((Z’l V $2) AN (.%1 \Y @2)) V ((T1 \ (.Z’g N Tg)) /\53)

3SAT = {¢’ | ¢’ is a satisfiable 3CNF formula}

e.g. (.%1 V xo V .732) A (332 V 13 \/54) A\ (.772 V z3V 55)

27/30

Reducing SAT to 3SAT

Example: Y= (.732 V (.131 /\fg)) N (51 A\ ($1 V xg))

Ty X X T T X2
Tree representation of ¢
Add extra variable to ¢’ for
each wire in the tree

28/30

Reducing SAT to 3SAT

Example: Y= (.732 V (.131 /\fg)) N (51 A\ ($1 V xg))
Add clauses to ¢’ for each gate

TpTsXy Ty = Xy N\ T

TTT T
TTF F
TFT F
T FF T
FTT F
FTF T
T2 T T X1 X X2 PR F
Tree representation of ¢ FEE U
Add extra variable to ¢’ for Clauses added:
each wire in the tree (T4 VTs Var) A (Ty V25 V Ty)

(24 VT5 VT7) A (24 V 25 V T7)

28/30

Reducing SAT to 3SAT
Boolean formula ¢ 3CNF formula ¢

R: On input (p), where ¢ is a Boolean formula
Construct and output the following 3CNF formula ¢
¢’ has extra variable z,.1, ..., Thiy
one for each gate Gj in ¢
For each gate Gj, construct the forumla ¢;
forcing the output of Gj to be correct given its inputs
Set @' = i1 A A@uipt A(Zpgt V Tttt V Tngt)

requires output of ¢ to be TRUE

29/30

Reducing SAT to 3SAT
Boolean formula ¢ 3CNF formula ¢

 satisflable +— ¢’ satisfiable

Every satisfying assignment of ¢ extends uniquely to a satisfying
assignment of ¢’

In the other direction, in every satisfying assignment of ¢’, the
x1,. .., T, part satisfies ¢

30/30

