Undecidability and Reductions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2019

Chinese University of Hong Kong

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid \text{Turing machine } M \text{ accepts input } w \}$

Turing's Theorem

The language A_{TM} is undecidable

Note: a Turing machine M may take as input its own description $\langle M \rangle$

Proof of Turing's Theorem

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM *H* decides A_{TM} :

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM *H* decides A_{TM} :

Construct a new TM *D* (that uses *H* as a subroutine):

On input $\langle M \rangle$ (i.e. the description of a Turing machine *M*),

- 1. Run *H* on input $\langle M, \langle M \rangle \rangle$
- 2. Output the opposite of *H*: If *H* accepts, *D* rejects; if *H* rejects, *D* accepts

Proof of Turing's theorem

What happens when $M = D$?

Proof of Turing's theorem

What happens when $M = D$?

H never loops indefinitely, neither does *D*

If *D* rejects $\langle D \rangle$, then *D* accepts $\langle D \rangle$ If *D* accepts $\langle D \rangle$, then *D* rejects $\langle D \rangle$

Contradiction! *D* cannot exist! *H* cannot exist!

Proof by contradiction

Assume A_{TM} is decidable

Then there are TM H , H' and D

But *D* cannot exist!

Conclusion

The language A_{TM} is undecidable

Write an infinite table for the pairs (*M*, *w*)

(Entries in this table are all made up for illustration)

Only look at those *w* that describe Turing machines

If A_{TM} is decidable, then TM D is in the table

Diagonalization

D does the opposite of the diagonal entries *D* on $\langle M_i \rangle$ = opposite of M_i on $\langle M_i \rangle$

We run into trouble when we look at $(D,\langle D \rangle)$

The language A_{TM} is recognizable but not decidable

How about languages that are not recognizable?

 $\overline{A_{\text{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM that does not accept } w \}$ $=\{ \langle M, w \rangle \mid M \text{ rejects or loops on input } w \}$

Claim

The language $\overline{A_{TM}}$ is not recognizable

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof of Claim from Theorem:

We know A_{TM} is recognizable if $\overline{A_{TM}}$ were also, then A_{TM} would be decidable

But Turing's Theorem says A_{TM} is not decidable

Theorem

If *L* and *L* are both recognizable, then *L* is decidable

Proof idea:

Let $M = TM$ recognizing $L, M' = TM$ recognizing \overline{L} The following Turing machine *N* decides *L*: On input *w*,

- 1. Simulate *M* on input *w*. If *M* accepts, *N* accepts.
- 2. Simulate *M'* on input *w*. If *M'* accepts, *N* rejects.

Theorem

If *L* and *L* are both recognizable, then *L* is decidable

Proof idea:

Let $M = TM$ recognizing $L, M' = TM$ recognizing \overline{L} The following Turing machine *N* decides *L*: On input *w*,

- 1. Simulate *M* on input *w*. If *M* accepts, *N* accepts.
- 2. Simulate *M'* on input *w*. If *M'* accepts, *N* rejects.

Problem: If *M* loops on *w*, we will never go to step 2

Unrecognizable languages

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let $M = TM$ recognizing $L, M' = TM$ recognizing \overline{L}

The following Turing machine *N* decides *L*:

On input *w*,

For $t = 0, 1, 2, 3, \ldots$

Simulate first *t* transitions of *M* on input *w*.

If *M* accepts, *N* accepts.

Simulate first t transitions of M' on input w .

If M' accepts, N rejects.

[Reductions](#page-17-0)

Suppose you have a program *R* that solves problem *A* Now you want to solve problem *B*, if you can reduce *B* to *A* Then you can solve problem *B* Using *R* as a subroutine

Example from Lecture 16 $A_{DFA} = \{ \langle D, w \rangle \mid D$ is a DFA that accepts input *w*} $A_{NFA} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$ A_{NFA} reduces to A_{DFA} (by converting NFA into DFA)

If language *A* is decidable, and language *B* reduces to language *A* then *B* is also decidable

If language *B* reduces to language *A*, and *B* is undecidable then *A* is also undecidable

$HALT_{TM} = \{\langle M, w \rangle | M \text{ is a TM that halts on input } w\}$

We'll show:

 $HALT_{TM}$ is an undecidable language

We will argue that If HALT_{TM} is decidable, then so is A_{TM} ...but by Turing's theorem, A_{TM} is not If HALT_{TM} can be decided, so can A_{TM}

Suppose H decides HALT_{TM}

 $HALT_{TM} = \{M, w\} | M$ is a TM that halts on input *w*} $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

> Suppose $HALT_{TM}$ is decidable Let H be a TM that decides HALT_{TM} The following TM S decides A_{TM} On input $\langle M, w \rangle$:

Run *H* on input $\langle M, w \rangle$

If *H* rejects, reject

If *H* accepts, run universal TM *U* on input $\langle M, w \rangle$

If *U* accepts, accept; else reject

Steps for showing that a language *L* is undecidable:

- 1. If some TM *R* decides *L*
- 2. Using *R*, build another TM *S* that decides A_{TM}

But A_{TM} is undecidable, so R cannot exist

$A'_{\text{TM}} = \{\langle M\rangle \mid M \text{ is a TM that accepts input } \varepsilon\}$

Is A'_{TM} decidable? Why?

$A'_{\text{TM}} = \{\langle M\rangle \mid M \text{ is a TM that accepts input } \varepsilon\}$

Is A'_{TM} decidable? Why?

Undecidable!

Intuitive reason:

To know whether *M* accepts ε seems to require simulating *M*

But then we need to know whether *M* halts

Let's justify this intuition

Example 1: Figuring out the reduction

M' should be a Turing machine such that

outcome of *M'* on input ε = outcome of *M* on input *w*

Example 1: Implementing the reduction

$$
\langle M, w \rangle \longrightarrow \boxed{}\qquad \qquad ? \qquad \longrightarrow \langle M' \rangle
$$

M' should be a Turing machine such that *M'* on input $\varepsilon = M$ on input *w*

Description of the machine M':

On input *z*

- 1. Simulate *M* on input *w*
- 2. If *M* accepts *w*, accept
- 3. If *M* rejects *w*, reject

Description of *S*:

On input $\langle M, w \rangle$ where *M* is a TM

1. Construct the following TM M':

 $M' = a$ TM such that on input *z*,

Simulate *M* on input *w* and accept/reject according to *M*

2. Run R on input $\langle M' \rangle$ and accept/reject according to R

Example 1: The formal proof

 $A'_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$ $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Suppose A'_{TM} is decidable by a TM R . Consider the TM *S*: On input $\langle M, w \rangle$ where *M* is a TM 1. Construct the following TM M':

 $M' = a$ TM such that on input *z*, Simulate *M* on input *w* and accept/reject according to *M*

2. Run R on input $\langle M' \rangle$ and accept/reject according to R

Then *S* accepts $\langle M, w \rangle$ if and only if *M* accepts *w* So S decides A_{TM} , which is impossible

 $A''_{\text{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts some input strings}\}$ Is A''_{TM} decidable? Why?

 $A''_{\text{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts some input strings}\}$ Is A''_{TM} decidable? Why?

Undecidable!

Intuitive reason:

To know whether *M* accepts some strings seems to require simulating *M*

But then we need to know whether *M* halts

Let's justify this intuition

Eample 2: Figuring out the reduction

M' should be a Turing machine such that

*M*⁰ accepts some strings if and only if *M* accepts input *w*

Task: Given $\langle M, w \rangle$, construct M' so that If M accepts w , then M' accepts some input If M does not accept w , then M' accepts no inputs

 $M' = a$ TM such that on input *z*,

- 1. Simulate *M* on input *w*
- 2. If *M* accepts, accept
- 3. Otherwise, reject

Example 2: The formal proof

 $A''_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \}$ $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Suppose $A^{\prime\prime}_{\text{TM}}$ is decidable by a TM R . Consider the TM *S*: On input $\langle M, w \rangle$ where *M* is a TM 1. Construct the following TM M':

 $M' = a$ TM such that on input *z*, Simulate *M* on input *w* and accept/reject according to *M*

2. Run R on input $\langle M' \rangle$ and accept/reject according to R Then *S* accepts $\langle M, w \rangle$ if and only if *M* accepts *w* So S decides A_{TM} , which is impossible

$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$ Is E_{TM} decidable?

 $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$ Is E_{TM} decidable?

Undecidable! We will show: If E_{TM} can be decided by some TM R Then $A^{\prime\prime}_{\mathsf{TM}}$ can be decided by another TM S $A^{\prime\prime}_{TM} = \{\langle M\rangle \mid M \text{ is a TM that accepts some input strings}\}$ $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$ $A''_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \}$

Note that E_{TM} and A''_{TM} are complement of each other (except ill-formatted strings, which we will ignore) Suppose E_{TM} can be decided by some TM R Consider the following TM *S*: On input $\langle M \rangle$ where *M* is a TM

- 1. Run *R* on input $\langle M \rangle$
- 2. If *R* accepts, reject
- 3. If *R* rejects, accept

Then *S* decides A_{TM}'' , a contradiction $31/34$

$EQ_{TM} = {\langle M_1, M_2 \rangle | M_1}$ and M_2 are TMs such that $L(M_1) = L(M_2)$ Is EQ_{TM} decidable?

 $EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2)\}\$ Is EQ_{TM} decidable?

Undecidable!

We will show that EQ_{TM} can be decided by some TM R

then E_{TM} can be decided by another TM S

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \}$ $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$

Given $\langle M \rangle$, we need to construct $\langle M_1, M_2 \rangle$ so that If *M* accepts no input, then M_1 and M_2 accept same set of inputs If *M* accepts some input, then M_1 and M_2 do not accept same set of inputs

Idea: Make $M_1 = M$

Make M_2 accept nothing

 $EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2)\}\$ $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$

> Suppose EQ_{TM} is decidable and *R* decides it Consider the following TM *S*: On input $\langle M \rangle$ where *M* is a TM

- 1. Construct a TM M_2 that rejects every input z
- 2. Run *R* on input $\langle M, M_2 \rangle$ and accept/reject according to *R*

Then *S* accepts $\langle M \rangle$ if and only if *M* accepts no input So *S* decides E_{TM} which is impossible