Undecidability and Reductions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2019

Chinese University of Hong Kong

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid \mathsf{Turing machine } M \mathsf{ accepts input } w \}$

Turing's Theorem

The language $A_{\rm TM}$ is undecidable

Note: a Turing machine M may take as input its own description $\langle M \rangle$

Proof of Turing's Theorem

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM} :

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM} :

Construct a new TM D (that uses H as a subroutine):

On input $\langle M \rangle$ (i.e. the description of a Turing machine M),

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. Output the opposite of *H*: If *H* accepts, *D* rejects; if *H* rejects, *D* accepts

Proof of Turing's theorem

What happens when M = D?

Proof of Turing's theorem

What happens when M = D?

H never loops indefinitely, neither does D

If *D* rejects $\langle D \rangle$, then *D* accepts $\langle D \rangle$ If *D* accepts $\langle D \rangle$, then *D* rejects $\langle D \rangle$

Contradiction! *D* cannot exist! *H* cannot exist!

Proof by contradiction

Assume A_{TM} is decidable

Then there are TM H, H' and D

But D cannot exist!

Conclusion

The language A_{TM} is undecidable

	all possible inputs w				
	ε	0	1	00	
M_1	acc	rej	rej	acc	
M_2	rej	acc	loop	rej	
M_3	rej	loop	rej	rej	
M_4	acc	rej	acc	loop	
		:			
		•			
	M_2 M_3	$\begin{array}{c} \varepsilon \\ M_1 & \text{acc} \\ M_2 & \text{rej} \\ M_3 & \text{rej} \end{array}$	$\begin{array}{c c} \varepsilon & 0 \\ \hline M_1 & \text{acc} & \text{rej} \\ M_2 & \text{rej} & \text{acc} \\ M_3 & \text{rej} & \text{loop} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε 0100 M_1 accrejrejacc M_2 rejacclooprej M_3 rejlooprejrej

Write an infinite table for the pairs (M, w)

(Entries in this table are all made up for illustration)

		inputs w				
		$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 \rangle$	
ole achines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
	M_3	loop	acc	acc	acc	
ssibl ma	M_4	acc	acc	loop	acc	
all possible Turing mach			:			

Only look at those w that describe Turing machines

		inputs w				
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
all possible Turing machines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
	M_3	loop	acc	acc	acc	
	÷		÷			
	D	rej	acc	rej	rej	
al Tu	÷		:			

If $A_{\rm TM}$ is decidable, then TM D is in the table

Diagonalization

		inputs w				
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
all possible Turing machines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
	M_3	loop	acc	acc	acc	
	÷		:			
all pos Turing	D	rej	acc	rej	rej	
σ⊢	÷		:			

D does the opposite of the diagonal entries D on $\langle M_i \rangle$ = opposite of M_i on $\langle M_i \rangle$

We run into trouble when we look at $(D, \langle D \rangle)$

The language A_{TM} is recognizable but not decidable

How about languages that are not recognizable?

 $\overline{A_{\mathsf{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM that does not accept } w \}$ $= \{ \langle M, w \rangle \mid M \text{ rejects or loops on input } w \}$

Claim

The language $\overline{A_{TM}}$ is not recognizable

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof of Claim from Theorem:

We know $A_{\rm TM}$ is recognizable if $\overline{A_{\rm TM}}$ were also, then $A_{\rm TM}$ would be decidable

But Turing's Theorem says $A_{\rm TM}$ is not decidable

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let M = TM recognizing L, M' = TM recognizing \overline{L}

The following Turing machine N decides L:

On input w,

- 1. Simulate M on input w. If M accepts, N accepts.
- 2. Simulate M' on input w. If M' accepts, N rejects.

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea:

Let M = TM recognizing L, M' = TM recognizing \overline{L}

The following Turing machine N decides L:

On input w,

- 1. Simulate M on input w. If M accepts, N accepts.
- 2. Simulate M' on input w. If M' accepts, N rejects.

Problem: If M loops on w, we will never go to step 2

Unrecognizable languages

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let M = TM recognizing L, M' = TM recognizing \overline{L} The following Turing machine N decides L:

On input w,

For $t = 0, 1, 2, 3, \ldots$

Simulate first t transitions of M on input w.

If M accepts, N accepts.

Simulate first t transitions of M' on input w.

If M' accepts, N rejects.

Reductions

Suppose you have a program *R* that solves problem *A* Now you want to solve problem *B*, if you can reduce *B* to *A* Then you can solve problem *B* Using *R* as a subroutine

Example from Lecture 16 $A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$ $A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$ A_{NFA} reduces to A_{DFA} (by converting NFA into DFA)

If language A is decidable, and language B reduces to language A then B is also decidable

If language *B* reduces to language *A*, and *B* is undecidable then *A* is also undecidable

$HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$

We'll show:

 $\mathsf{HALT}_\mathsf{TM}$ is an undecidable language

We will argue that If HALT_{TM} is decidable, then so is $A_{\rm TM}$...but by Turing's theorem, $A_{\rm TM}$ is not

If ${\rm HALT_{\rm TM}}$ can be decided, so can $A_{\rm TM}$

Suppose H decides HALT_{TM}

$$\begin{split} \mathsf{HALT}_{\mathsf{TM}} &= \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \\ A_{\mathsf{TM}} &= \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \end{split}$$

Suppose HALT_{TM} is decidable Let H be a TM that decides HALT_{TM} The following TM S decides A_{TM} On input $\langle M, w \rangle$:

Run H on input $\langle M, w \rangle$

If H rejects, reject

If H accepts, run universal TM $\,U$ on input $\langle M,w\rangle$

If U accepts, accept; else reject

Steps for showing that a language *L* is undecidable:

- 1. If some TM R decides L
- 2. Using R, build another TM S that decides $A_{\rm TM}$

But $A_{\rm TM}$ is undecidable, so R cannot exist

$A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$

Is $A'_{\rm TM}$ decidable? Why?

$A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$

Is $A'_{\rm TM}$ decidable? Why?

Undecidable!

Intuitive reason:

To know whether M accepts ε seems to require simulating M

But then we need to know whether M halts

Let's justify this intuition

Example 1: Figuring out the reduction

M′ should be a Turing machine such that

outcome of M' on input $\varepsilon = \operatorname{outcome}$ of M on input w

Example 1: Implementing the reduction

$$\langle M, w \rangle \longrightarrow ? \longrightarrow \langle M' \rangle$$

M' should be a Turing machine such that $M' \text{ on input } \varepsilon = M \text{ on input } w$

Description of the machine M': On input z

- 1. Simulate M on input w
- 2. If M accepts w, accept
- 3. If M rejects w, reject

Description of S:

On input $\langle M, w \rangle$ where M is a TM

1. Construct the following TM M':

M' = a TM such that on input z,

Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M' \rangle$ and accept/reject according to R

Example 1: The formal proof

 $A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$ $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

Suppose A'_{TM} is decidable by a TM R. Consider the TM S: On input $\langle M, w \rangle$ where M is a TM 1. Construct the following TM M':

M' = a TM such that on input z,

Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M' \rangle$ and accept/reject according to R

Then S accepts $\langle M, w \rangle$ if and only if M accepts w So S decides A_{TM} , which is impossible $A_{\rm TM}''=\{\langle M\rangle\mid M \text{ is a TM that accepts some input strings}\}$ Is $A_{\rm TM}''$ decidable? Why?

 $A''_{\rm TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$ Is $A''_{\rm TM}$ decidable? Why?

Undecidable!

Intuitive reason:

To know whether M accepts some strings seems to require simulating M

But then we need to know whether M halts

Let's justify this intuition

Eample 2: Figuring out the reduction

M' should be a Turing machine such that

 M^\prime accepts some strings if and only if M accepts input w

Task: Given $\langle M, w \rangle$, construct M' so that If M accepts w, then M' accepts some input If M does not accept w, then M' accepts no inputs

M' = a TM such that on input z,

- 1. Simulate M on input w
- 2. If M accepts, accept
- 3. Otherwise, reject

Example 2: The formal proof

 $A_{\mathsf{TM}}^{\prime\prime} = \{\langle M \rangle \mid M \text{ is a TM that accepts some input}\}$ $A_{\mathsf{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$

Suppose A''_{TM} is decidable by a TM R. Consider the TM S: On input $\langle M, w \rangle$ where M is a TM 1. Construct the following TM M':

M' = a TM such that on input z,

Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M' \rangle$ and accept/reject according to RThen S accepts $\langle M, w \rangle$ if and only if M accepts wSo S decides A_{TM} , which is impossible

$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$ Is E_{TM} decidable?

 $E_{\mathrm{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$ Is E_{TM} decidable?

Undecidable! We will show: If E_{TM} can be decided by some TM RThen A''_{TM} can be decided by another TM S $A''_{\text{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts some input strings}\}$ $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \}$ $A_{\text{TM}}'' = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input} \}$

Note that E_{TM} and A_{TM}'' are complement of each other (except ill-formatted strings, which we will ignore) Suppose E_{TM} can be decided by some TM RConsider the following TM S: On input $\langle M \rangle$ where M is a TM

- 1. Run R on input $\langle M \rangle$
- 2. If R accepts, reject
- 3. If R rejects, accept

Then S decides $A_{\rm TM}^{\prime\prime}$, a contradiction

$$\label{eq:EQTM} \begin{split} \mathsf{EQ}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ & \qquad \mathsf{Is } \mathsf{EQ}_{\mathsf{TM}} \text{ decidable?} \end{split}$$

$$\label{eq:EQTM} \begin{split} \mathsf{EQ}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ & \qquad \mathsf{Is } \mathsf{EQ}_{\mathsf{TM}} \text{ decidable?} \end{split}$$

Undecidable!

We will show that EQ_{\rm TM} can be decided by some TM R then $E_{\rm TM}$ can be decided by another TM S

$$\begin{split} \mathsf{EQ}_{\mathsf{TM}} &= \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ E_{\mathsf{TM}} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \end{split}$$

Given $\langle M \rangle$, we need to construct $\langle M_1, M_2 \rangle$ so that If M accepts no input, then M_1 and M_2 accept same set of inputs If M accepts some input, then M_1 and M_2 do not accept same set of inputs

Idea: Make $M_1 = M$

Make M_2 accept nothing

$$\begin{split} \mathsf{EQ}_{\mathsf{TM}} &= \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2) \} \\ E_{\mathsf{TM}} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts no input} \} \end{split}$$

Suppose EQ_{TM} is decidable and R decides it Consider the following TM S: On input $\langle M \rangle$ where M is a TM

- 1. Construct a TM M_2 that rejects every input z
- 2. Run R on input $\langle M, M_2 \rangle$ and accept/reject according to R

Then S accepts $\langle M \rangle$ if and only if M accepts no input So S decides E_{TM} which is impossible