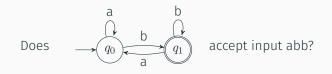
Decidability

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2019

Chinese University of Hong Kong

Problems about automata



We can formulate this question as a language

 $A_{\mathsf{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Is A_{DFA} decidable?

One possible way to encode a DFA $D = (Q, \Sigma, \delta, q_0, F)$ and input w

$$(\underbrace{(q0,q1)}_{Q}\underbrace{(a,b)}_{\Sigma}\underbrace{((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))}_{\delta}\underbrace{(q0)}_{q_0}\underbrace{(q1)}_{F})\underbrace{(abb)}_{w}$$

$A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Pseudocode:

On input $\langle D, w \rangle$, where $D = (Q, \Sigma, \delta, q_0, F)$

Set $q \leftarrow q_0$ For $i \leftarrow 1$ to length(w) $q \leftarrow \delta(q, w_i)$ If $q \in F$ accept, else reject

TM description:

On input $\langle D, w \rangle$, where D is a DFA, w is a string

Simulate *D* on input *w* If simulation ends in an accept state, accept; else reject $A_{\mathsf{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Turing machine details:

Check input is in correct format

(Transition function is complete, no duplicate transitions)

Perform simulation:

((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb) ((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb) ((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb) ((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb)

$A_{\mathrm{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Turing machine details:

Check input is in correct format (Transition function is complete, no duplicate transitions)

Perform simulation: (very high-level)

Put markers on start state of D and first symbol of w

Until marker for w reaches last symbol:

Update both markers

If state marker is on accepting state, accept; else reject

Conclusion: A_{DFA} is decidable

 $A_{\mathsf{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$ $A_{\mathsf{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$ $A_{\mathsf{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \}$

Which of these is decidable?

 $A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$

The following TM decides $A_{\rm NFA}$: On input $\langle N,w\rangle$ where N is an NFA and w is a string

Convert N to a DFA D using the conversion procedure from Lecture 3 Run TM M for A_{DFA} on input $\langle D, w \rangle$

If M accepts, accept; else reject

Conclusion: $A_{\rm NFA}$ is decidable 🖌

 $A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \}$

The following TM decides A_{REX}

On input $\langle R, w \rangle$, where R is a regular expression and w is a string

Convert ${\it R}$ to an NFA ${\it N}$ using the conversion procedure from Lecture 4

Run the TM for $A_{
m NFA}$ on input $\langle N,w
angle$

If N accepts, accept; else reject

Conclusion: A_{REX} is decidable \checkmark

 $\mathsf{MIN}_{\mathsf{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \}$

 $EQ_{DFA} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$

 $E_{\mathsf{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \}$

Which of the above is decidable?

 $\mathsf{MIN}_{\mathsf{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \}$

The following TM decides MIN_{DFA} On input $\langle D \rangle$, where D is a DFA

Run the DFA minimization algorithm from Lecture 7 If every pair of states is distinguishable, accept; else reject

Conclusion: MIN_{DFA} is decidable 🖌

 $EQ_{DFA} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$

The following TM decides EQ_{DFA} On input $\langle D_1, D_2 \rangle$, where D_1 and D_2 are DFAs

Run the DFA minimization algorithm from Lecture 7 on D_1 to obtain a minimal DFA D_1'

Run the DFA minimization algorithm from Lecture 7 on $D_{\rm 2}$ to obtain a minimal DFA $D_{\rm 2}'$

If $D_1' = D_2'$, accept; else reject

Conclusion: EQ_{DFA} is decidable 🖌

 $E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \}$

The following TM T decides E_{DFA} On input $\langle D \rangle$, where D is a DFA

Run the TM S for EQ_{DFA} on input $\langle D,D'\rangle,$ where D' is any DFA that accepts no input, such as a,b

If S accepts, T accepts; else T rejects

Conclusion: E_{DFA} is decidable \checkmark

 $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$ L where L is a context-free language $EQ_{CFG} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \}$

Which of the above is decidable?

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$

The following TM V decides $A_{\rm CFG}$ On input $\langle G, w \rangle$, where G is a CFG and w is a string

Eliminate the ε - and unit productions from G

Convert G into Chomsky Normal Form G'

Run Cocke–Younger–Kasami algorithm on $\langle G', w \rangle$

If the CYK algorithm finds a parse tree, V accepts; else V rejects

Conclusion: A_{CFG} is decidable \checkmark

Problems about context-free grammars

L where L is a context-free language

Let L be a context-free language There is a CFG G for L

The following TM decides LOn input w

Run TM V from the previous slide on input $\langle G, w \rangle$

If V accepts, accept; else reject

Conclusion: every context-free language *L* is decidable

$$\label{eq:cfg} \begin{split} \mathsf{EQ}_{\mathsf{CFG}} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \} \\ & \text{ is not decidable } \quad \bigstar \end{split}$$

What's the difference between EQ_{DFA} and $EQ_{\text{CFG}}?$

To decide EQ_{DFA} we minimize both DFAs

But there is no method that, given a CFG or PDA, produces a unique equivalent minimal CFG or PDA

Universal Turing Machine and Undecidability

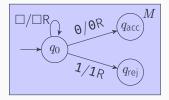
A computer is a machine that manipulates data according to a list of instructions

How does a Turing machine take a program as part of its input?

The universal TM U takes as inputs a program M and a string x, and simulates M on w

The program ${\cal M}$ itself is specified as a TM

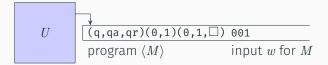
Turing machines as strings



A Turing machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{\rm acc}, q_{\rm rej})$

This Turing machine can be described by the string

Universal Turing machine



U on input $\langle M, w \rangle$:

Simulate M on input w

- If M enters accept state, U accepts
- If M enters reject state, U rejects

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$

U on input $\langle M, w \rangle$ simulates M on input w

M accepts w	M rejects w	M loops on w
\Downarrow	\Downarrow	\Downarrow
U accepts $\langle M, w \rangle$	U rejects $\langle M, w \rangle$	U loops on $\langle M,w angle$

TM U recognizes A_{TM} but does not decide A_{TM}

Recognizing versus deciding

The language recognized by a TM ${\cal M}$ is the set of all inputs that ${\cal M}$ accepts

A TM decides language L if it recognizes L and halts on every input

A language L is decidable if some TM decides L