Turing Machines and Their Variants

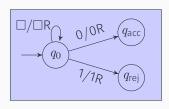
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2019

Chinese University of Hong Kong

Looping

Turing machine may not halt



$$\Sigma = \{0,1\}$$

input: ε

Inputs can be divided into three types:

Halting

We say M halts on input x if there is a sequence of configurations C_0, C_1, \ldots, C_k

 C_0 is starting C_i yields C_{i+1} C_k is accepting or rejecting

A TM M is a decider if it halts on every input

Language L is decidable if it is recognized by a TM that halts on every input

Programming Turing machines: Are two strings equal?

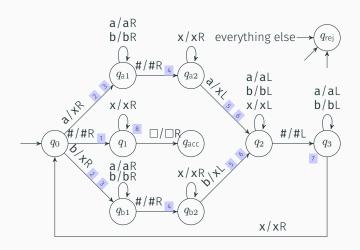
$$L_1 = \{ w \# w \mid w \in \{\mathsf{a},\mathsf{b}\}^* \}$$

Description of Turing Machine

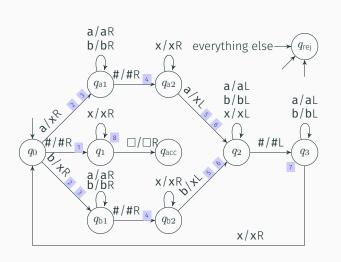
1	Until you reach #	
2	Read and remember entry	x <u>b</u> baa#xbbaa
3	Write x	x <u>x</u> baa#xbbaa
4	Move right past # and past all x's	xxbaa#x <u>b</u> baa
5	If this entry is different, reject	
6	Write x	xxbaa#x <u>x</u> baa
7	Move left past # and to right of first x	xx <u>b</u> aa#xxbaa
8	If you see only x 's followed by \square , accept	

Programming Turing machines: Are two strings equal?

$$L_1 = \{ w \# w \mid w \in \{ a, b \}^* \}$$



Programming Turing machines: Are two strings equal?



input: aab#aab

configurations:

 q_0 aab#aab $x q_{a1}$ ab#aab $xa q_{a1} b#aab$ $xab q_{a1} #aab$ $xab# q_{a2} aab$ $xab q_2 #xab$ $xa q_3 b#xab$ $x q_3 ab # xab$ q_3 xab#xab $x q_0 ab#xab$

$$L_2 = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid ij = k \text{ and } i, j, k > 0 \}$$

High level description of TM:

- 1 For every a:
- 2 Cross off the same number of b's and c's
- Uncross the crossed b's (but not the c's)
- Cross off this a
- If all a's and c's are crossed off, accept

Example:

- aabbcccc
- 2 aabbcccc
- aabbeecc
- 4 aabbeecc
- aabbeece
- 2 aabbeece
- aabbcccc

$$\Sigma = \{a, b\}$$
 $\Gamma = \{a, b, c, a, b, c, \Box\}$

$$L_2 = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid ij = k \text{ and } i, j, k > 0 \}$$

Low-level description of TM:

Scan input from left to right to check it looks like aa*bb*cc*

Move the head to the first symbol of the tape

For every **a**:

Cross off the same number of b's and c's

Restore the crossed off b's (but not the c's)

Cross off this a

If all a's and c's are crossed off, accept

$$L_2 = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid ij = k \text{ and } i, j, k > 0 \}$$

Low-level description of TM:

Scan input from left to right to check it looks like aa*bb*cc*

Move the head to the first symbol of the tape How?

For every **a**:

Cross off the same number of b's and c's How?

Restore the crossed off b's (but not the c's)

Cross off this a

If all a's and c's are crossed off, accept

Implementation details:

Move the head to the first symbol of the tape:

Put a special marker on top of the first a

àabbcccc

Cross off the same number of b's and c's:

Replace b by b

Move right until you see a **c**

Replace **c** by c

Move left just past the last **b**

If any uncrossed b's are left, repeat

àabbcccc àabbcccc

àabbcccc

àa<mark>bb∈</mark>ccc

àabbcccc àabbcccc

àabbcccc

$$\Sigma = \{\mathsf{a},\mathsf{b},\mathsf{c}\} \qquad \Gamma = \{\mathsf{a},\mathsf{b},\mathsf{c},\mathsf{a},\!+\!,\!-\!,\dot{\mathsf{a}},\!\dot{\bar{\mathsf{a}}},\square\}$$

Programming Turing machines: Element distinctness

$$L_3 = \{ \# x_1 \# x_2 \dots \# x_m \mid x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for every } i \neq j \}$$

Example: $#01#0011#1 \in L_3$

High-level description of TM:

On input \boldsymbol{w}

For every pair of blocks x_i and x_j in w

Compare the blocks x_i and x_j

If they are the same, reject

Accept

Programming Turing machines: Element distinctness

$$L_3 = \{ \#x_1 \#x_2 \dots \#x_m \mid x_i \in \{0,1\}^* \text{ and } x_i \neq x_i \text{ for every } i \neq j \}$$

Low-level desrciption:

- 0. If input is ε , or has exactly one #, accept
- 1. Mark the leftmost # as # and move right #01#0011#1
- 2. Mark the next unmarked # #01#0011#1

Programming Turing machines: Element distinctness

$$L_3 = \{ \#x_1 \#x_2 \dots \#x_m \mid x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for every } i \neq j \}$$

- 3. Compare the two strings to the right of # #01#0011#1 If they are equal, reject
- 4. Move the right # #01#0011#1

 If not possible, move the left # to the next #

 and put the right # on the next #

 If not possible, accept
- 5. Repeat Step 3 #01#0011#1 #01#0011#1 #01#0011#1

How to describe Turing Machines

Unlike for DFAs, NFAs, PDAs, we rarely give complete state diagrams of Turing Machines

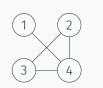
We usually give a high-level description unless you're asked for a low-level description or even state diagram

We are interested in algorithms behind the Turing machines

Programming Turing machines: Graph connectivity

$$L_4 = \{\langle G \rangle \mid G \text{ is a connected undirected graph}\}$$

How do we feed a graph into a Turing Machine? How to encode a graph G as a string $\langle G \rangle$?



Conventions for describing graphs:

(nodes)(edges)
no node appears twice
edges are pairs (first node, second node)

Programming Turing machines: Graph connectivity

$$L_3 = \{\langle G \rangle \mid G \text{ is a connected undirected graph}\}$$

High-level description:

On input $\langle G \rangle$

- 0. Verify that $\langle G \rangle$ is the description of a graph No node/edge repeats; Edge endpoints are nodes
- 1. Mark the first node of G
- 2. Repeat until no new nodes are marked:
 - 2.1 For each node, mark it if it is adjacent to an already marked node
- If all nodes are marked, accept; otherwise reject

Programming Turing machines: Graph connectivity

Some low-level details:

0. Verify that $\langle G \rangle$ is the description of a graph

No node/edge repeats: Similar to Element distinctness

Edge endpoints are nodes: Also similar to Element distinctness

1. Mark the first node of *G*

Mark the leftmost digit with a dot, e.g. 12 becomes $\dot{1}2$

- 2. Repeat until no new nodes are marked:
- 2.1 For each node, mark it if it is attached to an already marked node

For every dotted node u and every undotted node v:

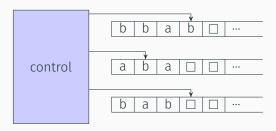
Underline both u and v from the node list

Try to match them with an edge from the edge list

If not found, remove underline from u and/or v and try another

Variants of Turing machines

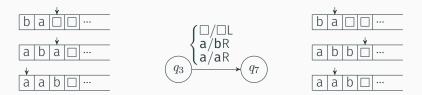
Multitape Turing machine



Transitions may depend on the contents of all cells under the heads

Different tape heads can move independent

Multitape Turing machine

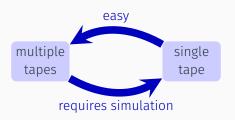


Multiple tapes are convenient

One tape can serve as temporary storage

How to argue equivalence

Multitape Turing machines are equivalent to singlne-tape Turing machines



$$\Gamma = \{a, b, \square, \dot{a}, \dot{b}, \dot{\square}, \#\}$$

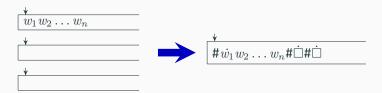
We show how to simulate a multitape Turing machine on a single tape Turing machine

To be specific, let's simulate a 3-tape TM

$$\begin{array}{c|c} & & & & & \\ \hline x_1 & \cdots & x_r & \cdots & x_i & \Box \\ \hline \\ \text{Multitape TM } M & & & & & \\ \hline y_1 & \cdots & \cdots & y_s & \cdots & y_j & \Box \\ \hline \\ & & & & \\ \hline z_1 & \cdots & z_t & \cdots & z_k & \Box \\ \hline \end{array}$$

Single tape TM S

Single-tape TM: Initialization

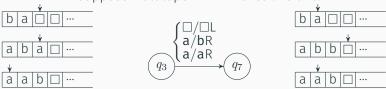


S: On input $w_1 \dots w_n$:

Replace tape contents by $\#\dot{w}_1w_2\dots w_n\#\dot{\square}\#\dot{\square}$ Remember that M is in state q_0

Single-tape TM: Simulating multitape TM moves

Suppose Multitape TM M moves like this:



We simulate the move on single-tape TM S like this



S given input $w_1 \dots w_n$:

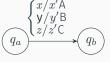
Replace tape contents by $\#\dot{w}_1w_2\dots w_n\#\dot{\square}\#\dot{\square}$ Remember (in state) that M is in state q_0

S simulates a step of M:

Make a pass over tape to find \dot{x} , \dot{y} , \dot{z}

$$\sharp x_1 x_2 \dots \dot{x} \dots x_i \sharp y_1 y_2 \dots \dot{y} \dots y_j \sharp z_1 z_2 \dots \dot{z} \dots z_k$$

If M at state q_a has transition $(q_a) = \begin{cases} x/x' & A \\ y/y' & B \\ z/z' & C \end{cases}$



update state/tape accordingly

If M reaches accept (reject) state, S accepts (rejects)

Simulation

To simulate a model M by another model N:

Say how the state and storage of N is used to represent the state and storage of M

Say what should be initially done to convert the input of N

Say how each transition of M can be implemented by a sequence of transitions of N