Pumping Lemma for Context-Free Languages CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2019

Chinese University of Hong Kong

$$L_{1} = \{a^{n}b^{n} \mid n \ge 0\}$$

$$L_{2} = \{z \mid z \text{ has the same number of a's and b's}\}$$

$$L_{3} = \{a^{n}b^{n}c^{n} \mid n \ge 0\}$$

$$L_{4} = \{zz^{R} \mid z \in \{a, b\}^{*}\}$$

$$L_{5} = \{zz \mid z \in \{a, b\}^{*}\}$$

These languages are not regular Are they context-free?

$$L_3 = \{ \mathsf{a}^n \mathsf{b}^n \mathsf{c}^n \mid n \geqslant 0 \}$$

Let's try to design a CFG or PDA

$S \rightarrow aBc \mid \varepsilon$	read a / push x
1	read b / pop x
$B \rightarrow ???$	222

Suppose we could construct some CFG G for L_3

e.g.

- $S \to CC \mid BC \mid \mathbf{a}$
- $B \to CS \mid \mathsf{b}$
- $C \to SB \mid \mathsf{C}$

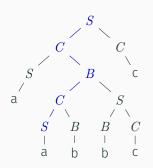
How does a long derivation look like?

- $S \Rightarrow CC$ $\Rightarrow SBC$ $\Rightarrow SCSC$
 - $\Rightarrow SSBSC$
 - $\Rightarrow SSBBCC$
 - $\Rightarrow aSBBCC$
 - $\Rightarrow aaBBCC$
 - $\Rightarrow aabBCC$
 - $\Rightarrow aabb CC$
 - $\Rightarrow aabbcC$
 - $\Rightarrow aabbcc$

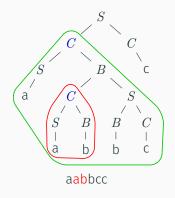
Repetition in long derivations

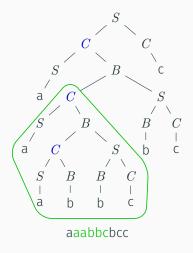
If a derivation is long enough, some variable must appear twice on the same root-to-leave path in a parse tree

- $S \Rightarrow CC$
 - $\Rightarrow SBC$
 - $\Rightarrow SCSC$
 - $\Rightarrow SSBSC$
 - $\Rightarrow SSBBCC$
 - $\Rightarrow aSBBCC$
 - \Rightarrow aaBBCC
 - $\Rightarrow aabBCC$
 - $\Rightarrow aabbCC$
 - $\Rightarrow aabbcC$
 - \Rightarrow aabbcc



Then we can "cut and paste" part of parse tree

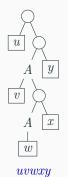


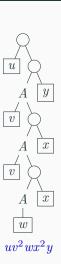


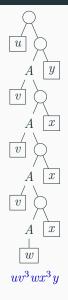
We can repeat this many times $aabbcc \Rightarrow aaabbcbcc \Rightarrow aaaabbcbcbcc \Rightarrow \dots$ $\Rightarrow (a)^i ab(bc)^i c$

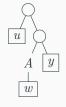
Every sufficiently large derivation will have a middle part that can be repeated indefinitely

Pumping in general









uwy

$$L_3 = \{ \mathsf{a}^n \mathsf{b}^n \mathsf{c}^n \mid n \ge 0 \}$$

If L_3 has a context-free grammar G, then for any sufficiently long $s \in L(G)$

s can be split into s = uvwxy such that L(G) also contains uv^2wx^2y , uv^3wx^3y , ...

What happens if $s = a^m b^m c^m$

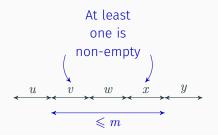
No matter how it is split, $uv^2wx^2y \notin L_3$

Pumping lemma for context-free languages

For every context-free language L

There exists a number m such that for every long string s in L $(|s| \ge m)$, we can write s = uvwxy where

- 1. $|vwx| \leq m$
- 2. $|vx| \ge 1$
- 3. For every $i \ge 0$, the string $uv^i wx^i y$ is in L



To prove L is not context-free, it is enough to show that

For every m there is a long string $s \in L$, $|s| \ge m$, such that for every way of writing s = uvwxy where

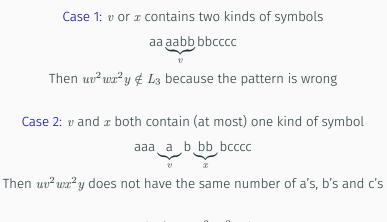
- 1. $|vwx| \leq m$
- 2. $|vx| \ge 1$

there is $i \ge 0$ such that $uv^i wx^i y$ is not in L

$$L_3 = \{ \mathsf{a}^n \mathsf{b}^n \mathsf{c}^n \mid n \ge 0 \}$$

- 1. for every m
- 2. there is $s = a^m b^m c^m$ (at least *m* symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx|\leqslant m, |vx|\geqslant 1)$
- 4. $uv^2wx^2y \notin L_3$ (but why?)

Using the pumping lemma



Conclusion: $uv^2wx^2y \notin L_3$

Which is context-free?

$$L_{1} = \{a^{n}b^{n} \mid n \ge 0\} \checkmark$$

$$L_{2} = \{z \mid z \text{ has the same number of a's and b's} \checkmark$$

$$L_{3} = \{a^{n}b^{n}c^{n} \mid n \ge 0\} \checkmark$$

$$L_{4} = \{zz^{R} \mid z \in \{a, b\}^{*}\} \checkmark$$

$$L_{5} = \{zz \mid z \in \{a, b\}^{*}\}$$

$$L_5 = \{ zz \mid z \in \{\mathsf{a},\mathsf{b}\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b a^m b$ (at least *m* symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \leq m, |vx| \geq 1)$
- 4. Is $uv^2wx^2y \notin L_5$?

$$L_5 = \{ zz \mid z \in \{\mathsf{a},\mathsf{b}\}^* \}$$

- 1. for every m
- 2. there is $s = a^m b a^m b$ (at least *m* symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx| \leq m, |vx| \geq 1)$
- 4. Is $uv^2wx^2y \notin L_5$?

$$L_5 = \{ zz \mid z \in \{a, b\}^* \}$$

- 1. for every \boldsymbol{m}
- 2. there is $s = a^m b^m a^m b^m$ (at least *m* symbols)
- 3. no matter how the pumping lemma splits s into uvwxy $(|vwx|\leqslant m, |vx|\geqslant 1)$
- 4. Is $uv^i wx^i y \notin L_5$ for some *i*?

Recall that $|vwx| \leqslant m$

Three cases

- Case 1 aaa aabbb bbaaaaabbbbb vwx is in the first half of $a^m b^m a^m b^m$
- Case 2 aaaaabb bbbaa aaabbbbb vwx is in the middle part of $a^m b^m a^m b^m$
- Case 3 aaaaabbbbbbaaa <u>aabbb</u> bb vwx is in the second half of $a^m b^m a^m b^m$

Example

Apply pumping lemma with i=0

- Case 1 aaa aabbb bbaaaaaabbbbbuwy becomes $a^{j}b^{k}a^{m}b^{m}$, where j < m or k < m
- Case 2 aaaaabb \underbrace{bbbaa}_{vwx} aaabbbbbbuwy becomes a ${}^{m}b^{j}a^{k}b^{m}$, where j < m or k < m
- Case 3 aaaaabbbbbaaa aabbb bbuww becomes $a^m b^m a^j b^k$, where j < m or k < m

Not of the form zz

This covers all cases, so L_5 is not context-free