Text Search and Closure Properties

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2019

Chinese University of Hong Kong

Text Search

grep program

Searches for an occurrence of patterns matching a regular expression

regex	language	meaning
cat 12	{cat, 12}	union
[abc]	$\{a,b,c\}$	shorthand for a b c
[ab][12]	$\{a1, a2, b1, b2\}$	concatenation
(ab)*	$\{arepsilon, abab, \dots\}$	star
[ab]?	$\{\varepsilon, a, b\}$	zero or one
(cat)+	$\{cat, catcat,\}$	one or more
[ab]{2}	$\{aa, ab, ba, bb\}$	n copies

Searching with grep

```
Words containing
savor or savour

cd /usr/share/dict/
grep -E 'savou?r' words
```

savor savor's savored savorier savories savoriest savoring savors savory savory's unsavory

Searching with grep

Words containing savor or savour

cd /usr/share/dict/
grep -E 'savou?r' words

savor savor's savored savorier savories savoriest savoring savors savory savory's unsavory Words with 5 consecutive a or b grep -E '[abAB]{5}' words

Babbage

More grep commands

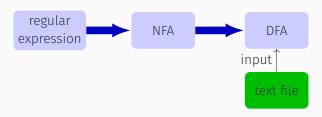
•	any symbol
[a-d]	anything in a range
٨	beginning of line
\$	end of line

How do you look for

```
Words that start in go and have another go
      grep -E '^go.*go' words
     Words with at least ten vowels?
grep -iE '([aeiouv].*){10}' words
       Words without any vowels?
  grep -iE '^[^aeiouv]*$' words
     [^R] means "does not contain"
      Words with exactly ten vowels?
```

grep -iE '^[^aeiouy]*([aeiouy][^aeiouy]*){10}\$' words

How grep (could) work



differences	in class	in grep
[ab]?, a+, (cat){3}	not allowed	allowed
input handling	matches whole	looks for substring
output	accept/reject	finds substring

Regular expression also supported in modern languages (C, Java, Python, etc)

Implementation of grep

How do you handle expressions like

[ab]?	→ () [ab]	zero or more	$R? \to \varepsilon R$
(cat)+	\rightarrow (cat)(cat)*	one or more	$R+ o RR^*$
a{3}	\rightarrow aaa	n copies	$R\{n\} \to \underbrace{RR \dots R}_{n \text{ times}}$
[^aeiouy]	?	not containing	

Closure properties

Example

The language L of strings that end in 101 is regular

$$(0+1)*101$$

How about the language \overline{L} of strings that do not end in 101?

Example

The language L of strings that end in 101 is regular

$$(0+1)*101$$

How about the language \overline{L} of strings that do not end in 101?

Hint: a string does not end in 101 if and only if it ends in 000, 001, 010, 011, 100, 110 or 111 or has length 0, 1, or 2

So \overline{L} can be described by the regular expression $(0+1)^*(000+001+010+011+100+110+111)+\varepsilon+(0+1)+(0+1)(0+1)$

Complement

The complement \overline{L} of a language L contains those strings that are not in L

$$\overline{L} = \{ w \in \Sigma^* \mid w \not\in L \}$$

Examples
$$(\Sigma = \{0,1\})$$

 $L_1 = \text{lang. of all strings that end in 101}$

 $\overline{L_1} = \text{lang. of all strings that do not end in 101}$

= lang. of all strings that end in 000, ..., 111 (but not 101) or have length 0, 1, or 2

$$L_2 = \text{lang. of 1}^* = \{\varepsilon, 1, 11, 111, \dots\}$$

 $\overline{L_2} =$ lang. of all strings that contain at least one 0

= lang. of the regular expression $(0+1)^*0(0+1)^*$

Example

The language L of strings that contain 101 is regular

$$(0+1)*101(0+1)*$$

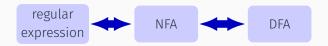
How about the language \overline{L} of strings that do not contain 101?

You can write a regular expression, but it is a lot of work!

Closure under complement

If L is a regular language, so is \overline{L}

To argue this, we can use any of the equivalent definitions of regular languages



The DFA definition will be the most convenient here We assume L has a DFA, and show \overline{L} also has a DFA

Arguing closure under complement

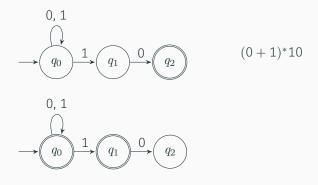
Suppose L is regular, then it has a DFA M

$$\rightarrow$$
 accepts L

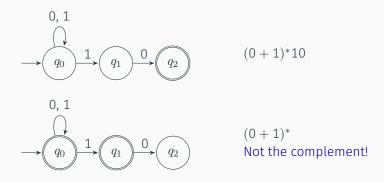
Now consider the DFA M^\prime with the accepting and rejecting states of M reversed

accepts strings not in
$${\cal L}$$

Can we do the same with an NFA?



Can we do the same with an NFA?



Intersection

The intersection $L \cap L'$ is the set of strings that are in both L and L'

Examples:

	'	
L	L'	$L \cap L'$
$(0+1)^*11$	1*	1*11
L	L'	$L \cap L'$

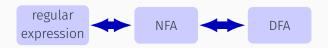
If L and L' are regular, is $L \cap L'$ also regular?

(0+1)*10

Closure under intersection

If L and L' are regular languages, so is $L \cap L'$

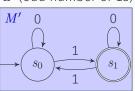
To argue this, we can use any of the equivalent definitions of regular languages



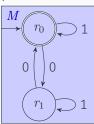
Suppose L and L' have DFAs, call them M and M' Goal: construct a DFA (or NFA) for $L\cap L'$

Example

L' (odd number of 1s)



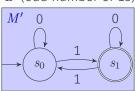
L (even number of 0s)



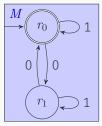
 $L\cap L'=$ lang. of even number of 0s and odd number of 1s

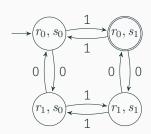
Example

L' (odd number of 1s)



L (even number of 0s)





 $L\cap L'=$ lang. of even number of 0s and odd number of 1s

Closure under intersection

	M and M^\prime	DFA for $L\cap L'$
states	$Q = \{r_1, \dots, r_n\}$ $Q' = \{s_1, \dots, s_m\}$	$Q \times Q' = \{(r_1, s_1), (r_1, s_2), \dots, (r_2, s_1), \dots, (r_n, s_m)\}$
start states	r_i for M s_j for M^\prime	(r_i,s_j)
accepting states	F for M	$F \times F' = \{(r_i, s_j) \mid r_i \in F, s_j \in F'\}$

Whenever M is in state r_i and M' is in state s_j , the DFA for $L \cap L'$ will be in state (r_i, s_j)

Closure under intersection

	M and M^\prime	DFA for $L\cap L'$
transitions	(r_i) $\xrightarrow{a} (r_j)$	$\overbrace{(r_i,s_k)} \xrightarrow{a} \overbrace{(r_j,s_\ell)}$
	(s_k) $a \rightarrow (s_\ell)$	

Reversal

The reversal w^R of a string w is w written backwards $w = \mathrm{dog} \qquad w^R = \mathrm{god}$

The reversal L^R of a language L is the language obtained by reversing all its strings

 $L = \{\log, \text{war}, \text{level}\} \qquad L^R = \{\text{god}, \text{raw}, \text{level}\}$

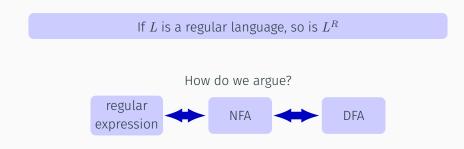
Reversal of regular languages

$$L=$$
 language of all strings that end in 01 L is regular and has regex
$$(0+1)^*01$$

How about L^R ?

This is the language of all strings beginning in 10 It is regular and represented by $10(0+1)^*$

Closure under reversal



Arguing closure under reversal

Take any regular language L

Will show that L^R is union/concatenation/star of "atomic" regular languages

A regular language can be of the following types:

- \emptyset and $\{\varepsilon\}$
- · alphabet symbols e.g. {0}, {1}
- · union, concatenation, or star of simpler regular languages

Inductive proof of closure under reversal

Regular language $\it L$	reversal L^R
Ø	Ø
$\{arepsilon\}$	$\{arepsilon\}$
$\{x\} (x \in \Sigma)$	{ <i>x</i> }
$L_1 \cup L_2$	$L_1^R \cup L_2^R$
L_1L_2	$L_2^R L_1^R$
L_1^*	$(L_1^R)^*$

Duplication?

$$L^{\mathrm{DUP}} = \{ww \mid w \in L\}$$

$$\begin{split} & \text{Example:} \\ & L = \{ \text{cat}, \text{dog} \} \\ & L^{\text{DUP}} = \{ \text{catcat}, \text{dogdog} \} \end{split}$$

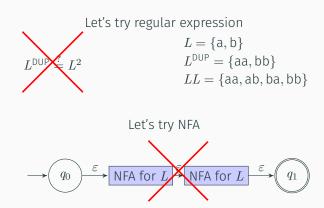
If L is regular, is $L^{\rm DUP}$ also regular?

Attempts

Let's try regular expression

$$L^{\rm DUP}\stackrel{?}{=}L^2$$

Attempts



An example

```
L = \text{language of 0*1} \qquad (L \text{ is regular}) L = \{1, 01, 001, 0001, \dots\} L^{\text{DUP}} = \{11, 0101, 001001, 00010001, \dots\} = \{0^n 10^n 1 \mid n \geqslant 0\}
```

Let's design an NFA for $L^{\rm DUP}$

An example

$$L^{\text{DUP}} = \{11, 0101, 001001, 00010001, \dots\}$$

$$= \{0^{n}10^{n}1 \mid n \geqslant 0\}$$

$$0 \quad 0 \quad 0 \quad 0 \quad \cdots$$

$$1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$01 \quad 001 \quad 0001$$

An example

$$L^{\text{DUP}} = \{11, 0101, 001001, 00010001, \dots\}$$

$$= \{0^{n}10^{n}1 \mid n \geqslant 0\}$$

$$\downarrow 0$$

$$\downarrow 1$$

$$\downarrow 1$$

$$\downarrow 1$$

$$\downarrow 01$$

$$\downarrow 001$$

$$\downarrow 0001$$

Seems to require infinitely many states!

Next lecture: will show that languages like L^{DUP} are not regular

Backreferences in grep

Advanced feature in grep and other "regular expression" libraries

the special expression \1 refers to the substring specified by (.*)

(.*)\1 looks for a repeated substring, e.g. mama

^(.*)\1\$ accepts the language L^{DUP}

Standard "regular expression" libraries can accept irregular languages (as defined in this course)!