
NFA to DFA conversion and regular expressions
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2019

Chinese University of Hong Kong

1/22



DFAs and NFAs are equally powerful

NFA can do everything a DFA can do

How about the other way?

Every NFA is equivalent to some DFA for the same language

2/22



NFA→ DFA algorithm

Given an NFA, figure out

1. the initial active states
2. how the set of active states changes upon reading an input
symbol

3/22



NFA→ DFA example

NFA: q0 q1 q2
ε,1

0

0

ε

Initial active states (before reading any input)?

partial
DFA: {q0, q1, q2}

0

{q1, q2}
1

∅
0

1

0,1

How does the set of active states change?

4/22



NFA→ DFA example

NFA: q0 q1 q2
ε,1

0

0

ε

Initial active states (before reading any input)?

partial
DFA: {q0, q1, q2}

0

{q1, q2}
1

∅
0

1

0,1

How does the set of active states change?

4/22



NFA→ DFA example

NFA: q0 q1 q2
ε,1

0

0

ε

Initial active states (before reading any input)?

partial
DFA: {q0, q1, q2}

0

{q1, q2}
1

∅
0

1

0,1

How does the set of active states change?

4/22



NFA→ DFA example

NFA: q0 q1 q2
ε,1

0

0

ε

Initial active states (before reading any input)?

partial
DFA: {q0, q1, q2}

0

{q1, q2}
1

∅
0

1

0,1

How does the set of active states change?

4/22



NFA→ DFA example

NFA: q0 q1 q2
ε,1

0

0

ε

Initial active states (before reading any input)?

partial
DFA: {q0, q1, q2}

0

{q1, q2}
1

∅
0

1

0,1

How does the set of active states change?

4/22



NFA→ DFA summary

NFA: q0 q1 q2
ε,1

0

0

ε

DFA: {q0, q1, q2}

0

{q1, q2}
1

∅
0

1

0,1

Every DFA state corresponds to a subset of NFA states

A DFA state is accepting if it contains an accepting NFA state

5/22



Regular expressions



Regular expressions

Powerful string matching feature in advanced editors (e.g. Vim,
Emacs) and modern programming languages (e.g. PERL, Python)

PERL regex examples:

colou?r matches “color”/“colour”

[A-Za-z]*ing matches any word ending in “ing”

We will learn to parse complicated regex recursively
by building up from simpler ones

Also construct the language matched by the expression recursively

Will focus on regular expressions in formal language theory
(notations differ from PERL/Python/POSIX regex)

6/22



String concatenation

s = abb
t = bab

st = abbbab
ts = bababb
ss = abbabb
sst = abbabbbab

s = x1 . . . xn, t = y1 . . . ym

⇓
st = x1 . . . xny1 . . . ym

7/22



Operations on languages

• Concatenation of languages L1 and L2

L1L2 = {st | s ∈ L1, t ∈ L2}

• n-th power of language L

Ln = {s1s2 . . . sn | s1, s2, . . . , sn ∈ L}

• Union of L1 and L2

L1 ∪ L2 = {s | s ∈ L1 or s ∈ L2}

8/22



Example

L1 = {0, 01} L2 = {ε, 1, 11, 111, . . . }

L1L2 = {0, 01, 011, 0111, . . . } ∪ {01, 011, 0111, 01111, . . . }
= {0, 01, 011, 0111, . . . }

0 followed by any number of 1s

L2
1 = {00, 001, 010, 0101} L2

2 = L2

Ln
2 = L2 for any n > 1

L1 ∪ L2 = {0, 01, ε, 1, 11, 111, . . . }

9/22



Operations on languages

The star of L are contains strings made up of zero or more chunks
from L

L∗ = L0 ∪ L1 ∪ L2 ∪ . . .

Example: L1 = {0, 01} and L2 = {ε, 1, 11, 111, . . . }

What is L∗
1? L∗

2?

10/22



Example

L1 = {0, 01}

L0
1 = {ε}

L1
1 = {0, 01}

L2
1 = {00, 001, 010, 0101}

L3
1 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are in L∗
1?

00100001

Yes

00110001

No

10010001

No

L∗
1 contains all strings such that any 1 is preceded by a 0

11/22



Example

L1 = {0, 01}

L0
1 = {ε}

L1
1 = {0, 01}

L2
1 = {00, 001, 010, 0101}

L3
1 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are in L∗
1?

00100001
Yes

00110001
No

10010001
No

L∗
1 contains all strings such that any 1 is preceded by a 0

11/22



Example

L1 = {0, 01}

L0
1 = {ε}

L1
1 = {0, 01}

L2
1 = {00, 001, 010, 0101}

L3
1 = {000, 0001, 0010, 00101, 0100, 01001, 01010, 010101}

Which of the following are in L∗
1?

00100001
Yes

00110001
No

10010001
No

L∗
1 contains all strings such that any 1 is preceded by a 0

11/22



Example

L2 = {ε, 1, 11, 111, . . . }

any number of 1s

L0
2 = {ε}

L1
2 = L2

L2
2 = L2

Ln
2 = L2 (n > 1)

L∗
2 = L0

2 ∪ L1
2 ∪ L2

2 ∪ . . .

= {ε} ∪ L2 ∪ L2 ∪ . . .

= L2

L∗
2 = L2

12/22



Example

L2 = {ε, 1, 11, 111, . . . }

any number of 1s

L0
2 = {ε}

L1
2 = L2

L2
2 = L2

Ln
2 = L2 (n > 1)

L∗
2 = L0

2 ∪ L1
2 ∪ L2

2 ∪ . . .

= {ε} ∪ L2 ∪ L2 ∪ . . .

= L2

L∗
2 = L2

12/22



Combining languages

We can construct languages by starting with simple ones, like {0}
and {1}, and combining them

{0}({0} ∪ {1})∗ ⇒ 0(0+ 1)∗

all strings that start with 0

({0}{1}∗) ∪ ({1}{0}∗) ⇒ 01∗ + 10∗

0 followed by any number of 1s, or
1 followed by any number of 0s

0(0+ 1)∗ and 01∗ + 10∗ are regular expressions

Blueprints for combining simpler languages into complex ones

13/22



Combining languages

We can construct languages by starting with simple ones, like {0}
and {1}, and combining them

{0}({0} ∪ {1})∗ ⇒ 0(0+ 1)∗

all strings that start with 0

({0}{1}∗) ∪ ({1}{0}∗) ⇒ 01∗ + 10∗

0 followed by any number of 1s, or
1 followed by any number of 0s

0(0+ 1)∗ and 01∗ + 10∗ are regular expressions

Blueprints for combining simpler languages into complex ones

13/22



Combining languages

We can construct languages by starting with simple ones, like {0}
and {1}, and combining them

{0}({0} ∪ {1})∗ ⇒ 0(0+ 1)∗

all strings that start with 0

({0}{1}∗) ∪ ({1}{0}∗) ⇒ 01∗ + 10∗

0 followed by any number of 1s, or
1 followed by any number of 0s

0(0+ 1)∗ and 01∗ + 10∗ are regular expressions

Blueprints for combining simpler languages into complex ones

13/22



Regular languages

A language L over Σ is regular if it is one of the following

• L = ∅ or {ε}
• L = {x} where x is a symbol in Σ

• If Σ = {0, 1}, then {0} and {1} are both regular over Σ

• if L1 and L2 are both regular, so are L1 ∪ L2, L1L2 and L∗
1

14/22



Syntax of regular expressions

A regular expression over Σ is an expression formed by the following
rules

• The symbols ∅ and ε are regular expressions
• Every symbol in Σ is a regular expression

• If Σ = {0, 1}, then 0 and 1 are both regular expressions over Σ

• If R and S are regular expressions, so are R + S , RS and R∗

Examples:
∅

0(0+ 1)∗

01∗ + 10∗

ε

1∗(ε+ 0)
(0+ 1)∗01(0+ 1)∗

A language is regular if it is represented by a regular expression

15/22



Understanding regular expressions

Σ = {0, 1}

01∗ = 0(1)∗ represents {0, 01, 011, 0111, . . . }

0 followed by any number of 1s

01∗ is not (01)∗

16/22



Understanding regular expressions

0+ 1 yields {0, 1} strings of length 1

(0+ 1)∗ yields {ε, 0, 1, 00, 01, 10, 11, . . . } any string

(0+ 1)∗010 any string that ends in 010

(0+ 1)∗01(0+ 1)∗ any string containing 01

17/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3

= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

18/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3

= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

18/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3

= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)

strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)

strings of length 3

18/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3

= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

18/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3

= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

18/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1))∗ + ((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is even or a multiple of 3

= strings of length 0, 2, 3, 4, 6, 8, 9, 10, 12, . . .

((0+ 1)(0+ 1))∗

strings of even length

(0+ 1)(0+ 1)
strings of length 2

((0+ 1)(0+ 1)(0+ 1))∗

strings whose length is a
multiple of 3

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

18/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2
or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

19/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2
or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

19/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2
or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)

strings of length 2

(0+ 1)(0+ 1)(0+ 1)

strings of length 3

19/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2
or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

19/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2
or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

19/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2
or 3

(0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1)

strings of length 2 or 3

(0+ 1)(0+ 1)
strings of length 2

(0+ 1)(0+ 1)(0+ 1)
strings of length 3

19/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2
or 3

Which are in the language?
ε

3

1

7

01

3

011

3

00110

3

011010110

3

The regular expression represents all strings except 0 and 1

20/22



Understanding regular expressions

What language does the following represent?

((0+ 1)(0+ 1) + (0+ 1)(0+ 1)(0+ 1))∗

strings that can be broken into blocks, where each block has length 2
or 3

Which are in the language?
ε

3

1
7

01
3

011
3

00110
3

011010110
3

The regular expression represents all strings except 0 and 1

20/22



Understanding regular expressions

What language does the following represent?

(1+ 01+ 001)∗︸ ︷︷ ︸
at most two 0s between two consecutive 1s

ends in at most two 0s︷ ︸︸ ︷
(ε+ 0+ 00)

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

ε 00 0110010110 0010010

21/22



Understanding regular expressions

What language does the following represent?

(1+ 01+ 001)∗︸ ︷︷ ︸
at most two 0s between two consecutive 1s

ends in at most two 0s︷ ︸︸ ︷
(ε+ 0+ 00)

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

ε 00 0110010110 0010010

21/22



Understanding regular expressions

What language does the following represent?

(1+ 01+ 001)∗︸ ︷︷ ︸
at most two 0s between two consecutive 1s

ends in at most two 0s︷ ︸︸ ︷
(ε+ 0+ 00)

Never three consecutive 0s

The regular expression represents strings not containing 000

Examples:

ε 00 0110010110 0010010

21/22



Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

(0+ 1)∗00(0+ 1)∗

22/22



Writing regular expressions

Write a regular expression for all strings with two consecutive 0s

(anything)00(anything)

(0+ 1)∗00(0+ 1)∗

22/22


	Regular expressions

