Cook-Levin Theorem
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2020

Chinese University of Hong Kong

1/18

NP-completeness

P-complete

Theorem (Cook-Levin)
Every language in NP
polynomial-time reduces to
SAT

QUE

2/18

Cook-Levin theorem

Every L € NP polynomial-time reduces to SAT

Need to find a polynomial-time reduction R such that

L SAT
z H Boolean formula ¢
z€L — ¢ is satisfiable

3/18

NP-completeness of SAT

All we know: L has a polynomial-time verifier V

Tableau of computation history of

1%
. S

001104#100

Vv 0110410 0 m110#100
z S
z € Lifand only if T
V accepts (z, s) for some s
1Gacc @ -

4/18

Tableau of computation history

0 @ i g g n = length of z
{ height of tableau is O(n°) for
some constant ¢
i width of tableau is O(nc)
k possible tableau symbols
Tdacc 0] -

Prig = True ifcell (T, S) contains symbol u
" | False otherwise

5/18

Reduction to SAT

L SAT
z H Boolean formula ¢
z€L — ¢ Is satisfiable

Will design a formula ¢ such that

variables of ¢ 7.8 u

assignmentto zr s, &~ assignmentto tableau symbols
satisfying assignment accepting computation history
¢ is satisfiable V accepts (z, s) for some s

T L

6/18

Reduction to SAT

Will construct in O(n?¢) time a formula ¢ such that
¢(x) is True precisely when the assignment to {zr s .} represents
legal and accepting computation history

G0 110#100
¢:¢cell/\¢init/\¢move/\¢acc eaniioexl1oe0
¢cell : Exactly one symbol in each
cell
Oinit : First row is goz#s for some s
dmove : Moves between adjacent
rows follow the transitions of V/
@acc : Last row contains gacc 19acc @ -

7/18

dcell - €Xactly one symbol per cell

¢celt = ¢cell71,1 ARERIA ¢cell7#rows,#cols where

beell,T,s = (7,51 V-V Tr,5k) at least one symbol

Nzr.51 A TT,52)

ANzr,5,1 A 21,5,3) .
] no two symbols in one cell

NZT,8 k-1 N TT,5.k)

8/18

First row is goz#ts for some s

Ginit = T1,1,g0 N T1,2,20 AN AN Tt g1z, N Tl ntot

Last row contains gscc Somewhere

Qbacc = T#rows,1, gacc VeV Trows, teols, gacc

9/18

Legal and illegal transitions windows

legal windows illegal windows
abx |~ - [gsab] -
abx | - | abgg |~
agsa | - -~ | q3q3al -

anX q3 qsx
a/xL

aba |- - |agsa

abgs | - -~ | ggab| -
aall| - -~ |agza| -
an aQGX

10/18

®move : Moves between rows follow transitions of V

ap az as

by by b3

1Gacc Q -

¢move = Qbmove.,l,l N eoe RN ¢move,t¢rows—1,#cols—2

s TT,S,a; N TT, 841,05 N TT,542,a5 N
move, T,S — \/
T741,8,60 N TT41,5+41,b N TT+1,542,bs
e
legat bybgbs

1/18

NP-completeness of SAT
z ﬁ Boolean formula ¢

z€L — ¢ is satisfiable

Let V be a polynomial-time verifier for L

R =0ninput z
1. Construct the formulas ¢éceli, Pinit, Pmove, Pace
2. OUtpUt ¢ - ¢cell A ¢imt A ¢move A ¢acc

R takes time O(n*)

V accepts (z, s) for some s if and only if ¢ is satisfiable

12/18

NP-completeness: More
examples

Cover for triangles

k-cover for triangles: k vertices that touch all triangles

Has 2-cover for triangles?
Yes

Has 1-cover for triangles?
No, it has two vertex-disjoint triangles

TRICOVER = {(G, k) | G has a k-cover for triangles}

TRICOVER is NP-complete

13/18

Step 1: TRICOVER is in NP

What is a solution for TRICOVER?
A subset of vertices like {D, F}

V =O0ninput (G, k, S), where S is a set of k

A—
vertices é\ /

1. For every triple (u, v, w) of vertices:
If (u,v), (v, w), (w, u) are all edges in G:
If none of u, v, w are in S, reject E

2. Otherwise, accept

Running time = O(n?)

14/18

Step 2: Some NP-hard problem reduces to TRICOVER

VC = {(G, k) | G has a vertex cover of size k}
Some vertex in every edge is covered

TRICOVER = {(G, k) | G has a k-cover for triangles}
Some vertex in every triangle is covered

Idea: replace edges by triangles

[N = LN

vertex cover in G cover for triangles in G’

15/18

VC polynomial-time reduces to TRICOVER

R = On input (G, k), where graph G has n vertices and m edges
1. Construct the following graph G':
G’ has n + m vertices:
v, ..., v, are vertices from G
introduce a new vertex u; for every edge (v;, v;) of G
For every edge (v;, v;) of G:
include edges (’Ui, ’Uj), (UZ'7 uij), (Uij, Uj) in G’
2. Output (G', k)

Running time is O(n + m)

16/18

Step 3: Argue correctness (forward)

(G,ky e VC = (G, k) € TRICOVER

E&) m;
G has a k-vertex cover S G’ has a k-triangle cover S

old triangles from G are covered
new triangles in G’ also covered

17/18

Step 3: Argue correctness (backward)

(G, k) eVC <« (G’ k) € TRICOVER

Tj)lo -

G has a k-vertex cover S’ G’ has a k-triangle cover S
S’ Is obtained after moving Some vertices in S may not
some vertices of S come from G!

Since S’ covers all triangles But we can move them and
in &, it covers all edges in G still cover the same triangle

18/18

	NP-completeness: More examples

