
NP-completeness
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2020

Chinese University of Hong Kong

1/30

Polynomial-time reductions

When we say

“INDEPENDENT-SET is at least as hard as CLIQUE”

What does that mean?

We mean

If CLIQUE cannot be decided by a polynomial-time Turing machine,
then neither does INDEPENDENT-SET

If INDEPENDENT-SET can be decided by a polynomial-time Turing
machine, then so does CLIQUE

Similar to the reductions we saw in the past 4-5 lectures, but with
the additional restriction of polynomial-time

2/30

Polynomial-time reductions

CLIQUE = {〈G, k〉 | Graph G has a clique of k vertices}
INDEPENDENT-SET = {〈G, k〉 | Graph G has having

an independent set of k vertices}

Theorem
If INDEPENDENT-SET has a polynomial-time Turing machine, so does

CLIQUE

3/30

Polynomial-time reductions

If INDEPENDENT-SET has a polynomial-time Turing machine, so does
CLIQUE

Proof

Suppose INDEPENDENT-SET is decided by a poly-time TM A

We want to build a TM S that uses A to solve CLIQUE

T A〈G, k〉
accept if G has
a clique of size k
reject otherwise

〈G′, k′〉
S

4/30

Reducing CLIQUE to INDEPENDENT-SET

We look for a polynomial-time Turing machine T that turns the
question

“Does G have a clique of size k?”

into

“Does G′ have an independent set (IS) of size k′?”

1 2

3 4

flip all edges7−→
1 2

3 4

Graph G Graph G′

clique of size k k=k′

←→ IS of size k′

5/30

Reducing CLIQUE to INDEPENDENT-SET

On input 〈G, k〉
Construct G′ by flipping all edges

of G
Set k′ = k
Output 〈G′, k′〉

T〈G, k〉 〈G′, k′〉

Cliques in G ←→ Independent sets in G′

• If G has a clique of size k
then G′ has an independent set of size k

• If G does not have a clique of size k
then G′ does not have an independent set of size k

6/30

Reduction recap

We showed that

If INDEPENDENT-SET is decidable by a polynomial-time Turing
machine, so is CLIQUE

by converting any Turing machine for INDEPENDENT-SET into one for
CLIQUE

To do this, we came up with a reduction that transforms instances of
CLIQUE into ones of INDEPENDENT-SET

7/30

Polynomial-time reductions

Language L polynomial-time reduces to L′ if

there exists a polynomial-time Turing machine T that takes an
instance x of L into an instance y of L′ such that

x ∈ L if and only if y ∈ L′

CLIQUE IS
L L′

x = 〈G, k〉
T

y = 〈G′, k′〉
x ∈ L y ∈ L′

G has a clique of size k G′ has an IS of size k

8/30

The meaning of reductions

L reduces to L′ means L is no harder than L′

If we can solve L′, then we can also solve L

Therefore

If L polynomial-time reduces to L′ and L′ ∈ P, then L ∈ P

T poly-time
TM for L′

x
accept

reject

y

9/30

Direction of reduction

Pay attention to the direction of reduction

“A is no harder than B” and “B is no harder than A”

have completely different meanings

It is possible that L reduces to L′ and L′ reduces to L

That means L and L′ are as hard as each other

For example, IS and CLIQUE reduce to each other

10/30

Boolean formula satisfiability

A boolean formula is an expression made up of variables, ANDs, ORs,
and negations, like

ϕ = (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1)

Task: Assign TRUE/FALSE values to variables so that the formula
evaluates to true

e.g. x1 = F x2 = F x3 = T x4 = T

Given a formula, decide whether such an assignment exist

11/30

3SAT

SAT = {〈ϕ〉 | ϕ is a satisfiable Boolean formula}
3SAT = {〈ϕ〉 | ϕ is a satisfiable Boolean formula

conjunctive normal form with 3 literals per clause}

literal: xi or xi

Conjuctive Normal Form (CNF): AND of ORs of literals

3CNF: CNF with 3 literals per clause (repetitions allowed)

(x1︸︷︷︸
literal

∨x2 ∨ x2) ∧ (x2 ∨ x3 ∨ x4)︸ ︷︷ ︸
clause

12/30

3SAT is in NP

ϕ = (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1)

Finding a solution:
Try all possible assignments
FFFF FTFF TFFF TTFF
FFFT FTFT TFFT TTFT
FFTF FTTF TFTF TTTF
FFTT FTTT TFTT TTTT
For n variables, there are 2n

possible assignments
Takes exponential time

Verifying a solution:
substitute
x1 = F x2 = F
x3 = T x4 = T
evaluating the formula
ϕ = (F ∨ T) ∧ (F ∨ F ∨ T) ∧ (T)
can be done in linear time

13/30

Cook–Levin theorem

Every L ∈ NP polynomial-time reduces to SAT

SAT = {〈ϕ〉 | ϕ is a satisfiable Boolean formula}

e.g. ϕ = (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1)

Every problem in NP is no harder than SAT

But SAT itself is in NP, so SAT
must be the “hardest problem”
in NP

If SAT ∈ P, then P = NP

P

NP

•
•

• •

•SAT •

14/30

NP-completeness

A language L is NP-hard if:

For every N in NP, N polynomial-time reduces to L

A language L is NP-complete if L is in NP and L is NP-hard

Cook–Levin theorem
SAT is NP-complete

P

NP

•
•

• •

•L •

15/30

Our (conjectured) picture of NP

NP-complete

P

NP

•PATH
•L01

•

•

•SAT •IS

•CLIQUE

A→ B: A polynomial-time reduces to B

In practice, most NP problems are either in P (easy) or NP-complete
(probably hard)

16/30

Interpretation of Cook–Levin theorem

Optimistic:

If we manage to solve SAT, then we can also solve CLIQUE and many
other

Pessimistic:

Since we believe P 6= NP, it is unlikely that we will ever have a fast
algorithm for SAT

17/30

Ubiquity of NP-complete problems

We saw a few examples of NP-complete problems, but there are
many more

Surprisingly, most computational problems are either in P or
NP-complete

By now thousands of problems have been identified as NP-complete

18/30

Reducing IS to VC

T〈G, k〉 〈G′, k′〉

G has an IS of size k ←→ G′ has a VC of size k′

Example

Independent sets:

∅, {1}, {2}, {3}, {4},
{1, 2}, {1, 3}

1 2

3 4

vertex covers:

{2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {2, 3, 4},
{1, 2, 3, 4}

19/30

Reducing IS to VC

Claim
S is an independent set if and
only if S is a vertex cover

1 2

3 4

Proof:

S is an independent set
m

no edge has both endpoints in S
m

every edge has an endpoint in S
m

S is a vertex cover

IS VC
∅ {1, 2, 3, 4}
{1} {2, 3, 4}
{2} {1, 3, 4}
{3} {1, 2, 4}
{4} {1, 2, 3}
{1, 2} {3, 4}
{1, 3} {2, 4}

20/30

Reducing IS to VC

T〈G, k〉 〈G′, k′〉

T: On input 〈G, k〉
Output 〈G,n− k〉

G has an IS of size k ←→ G has a VC of size n− k

Overall sequence of reductions:

SAT→ 3SAT→ CLIQUE 3→ IS 3→ VC

21/30

Reducing 3SAT to CLIQUE

3SAT = {ϕ | ϕ is a satisfiable Boolean formula in 3CNF}
CLIQUE = {〈G, k〉 | G is a graph having a clique of k vertices}

T3CNF formula ϕ 〈G, k〉

ϕ is satisfiable ←→ G has a clique of size k

22/30

Reducing 3SAT to CLIQUE

Example:

ϕ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

x1

x1

x2

x1

x2

x2

x1

x2

x3

One vertex for each literal occurrence

One edge for each consistent pair across different groups

(not opposite literals of the same variable)

23/30

Reducing 3SAT to CLIQUE

T3CNF formula ϕ 〈G, k〉

T: On input ϕ, where ϕ is a 3CNF formula with m clauses
Construct the following graph G:

G has 3m vertices, divided into m groups
One for each literal occurrence in ϕ

If vertices u and v are in different groups and consistent
Add an edge (u, v)

Output 〈G,m〉

24/30

Reducing 3SAT to CLIQUE

T3CNF formula ϕ 〈G, k〉

ϕ is satisfiable ←→ G has a clique of size m

x1

x1

x2

x1

x2

x2

x1

x2

x3

ϕ = (x1
T
∨ x1

T
∨ x2

F
) ∧ (x1

F
∨ x2

T
∨ x2

T
) ∧ (x1

F
∨ x2

F
∨ x3

T
)

25/30

Reducing 3SAT to CLIQUE: Summary

T3CNF formula ϕ 〈G, k〉

Every satisfying assignment of ϕ gives a clique of size m in G

Conversely, every clique of size m in G gives a satisfying assignment
of ϕ

Overall sequence of reductions:

SAT→ 3SAT 3→ CLIQUE 3→ IS 3→ VC

26/30

SAT and 3SAT

SAT = {ϕ | ϕ is a satisfiable Boolean formula}

e.g. ((x1 ∨ x2) ∧ (x1 ∨ x2)) ∨ ((x1 ∨ (x2 ∧ x3)) ∧ x3)

3SAT = {ϕ′ | ϕ′ is a satisfiable 3CNF formula}

e.g. (x1 ∨ x2 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5)

27/30

Reducing SAT to 3SAT

Example: ϕ = (x2 ∨ (x1 ∧ x2)) ∧ (x1 ∧ (x1 ∨ x2))

AND

OR

AND

NOT

x2

x3

x6

x8

NOT

AND

NOT

x1

x4

OR

x1 x2

x5

x7

x9

x1x2

x10

Tree representation of ϕ
Add extra variable to ϕ′ for

each wire in the tree

Add clauses to ϕ′ for each gate
x4x5x7 x7 = x4 ∧ x5

T T T T
T T F F
T F T F
T F F T
F T T F
F T F T
F F T F
F F F T

Clauses added:
(x4 ∨ x5 ∨ x7) ∧ (x4 ∨ x5 ∨ x7)

(x4 ∨ x5 ∨ x7) ∧ (x4 ∨ x5 ∨ x7)

28/30

Reducing SAT to 3SAT

Example: ϕ = (x2 ∨ (x1 ∧ x2)) ∧ (x1 ∧ (x1 ∨ x2))

AND

OR

AND

NOT

x2

x3

x6

x8

NOT

AND

NOT

x1

x4

OR

x1 x2

x5

x7

x9

x1x2

x10

Tree representation of ϕ
Add extra variable to ϕ′ for

each wire in the tree

Add clauses to ϕ′ for each gate
x4x5x7 x7 = x4 ∧ x5

T T T T
T T F F
T F T F
T F F T
F T T F
F T F T
F F T F
F F F T

Clauses added:
(x4 ∨ x5 ∨ x7) ∧ (x4 ∨ x5 ∨ x7)

(x4 ∨ x5 ∨ x7) ∧ (x4 ∨ x5 ∨ x7)

28/30

Reducing SAT to 3SAT

TBoolean formula ϕ 3CNF formula ϕ′

T: On input 〈ϕ〉, where ϕ is a Boolean formula
Construct and output the following 3CNF formula ϕ′

ϕ′ has extra variable xn+1, . . . , xn+t
one for each gate Gj in ϕ

For each gate Gj, construct the forumla ϕj
forcing the output of Gj to be correct given its inputs

Set ϕ′ = ϕn+1 ∧ · · · ∧ ϕn+t ∧ (xn+t ∨ xn+t ∨ xn+t)︸ ︷︷ ︸
requires output of ϕ to be TRUE

29/30

Reducing SAT to 3SAT

TBoolean formula ϕ 3CNF formula ϕ′

ϕ satisfiable←→ ϕ′ satisfiable

Every satisfying assignment of ϕ extends uniquely to a satisfying
assignment of ϕ′

In the other direction, in every satisfying assignment of ϕ′, the
x1, . . . , xn part satisfies ϕ

30/30

