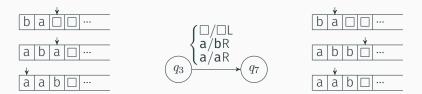

Variants of Turing Machines

CSCI 3130 Formal Languages and Automata Theory

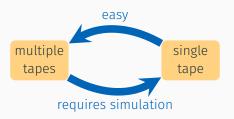
Siu On CHAN Fall 2020

Chinese University of Hong Kong


Multitape Turing machine

Transitions may depend on the contents of all cells under the heads

Different tape heads can move independent


Multitape Turing machine

Multiple tapes are convenient Some tapes can serve as temporary storage

How to argue equivalence

Multitape Turing machines are equivalent to single-tape Turing machines

$$\Gamma = \{a, b, \square, \dot{a}, \dot{b}, \dot{\square}, \#\}$$

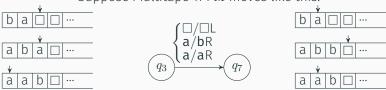
We show how to simulate a multitape Turing machine on a single tape Turing machine

To be specific, let's simulate a 3-tape TM

$$\begin{array}{c|c} & & & & \\ \hline x_1 & \cdots & x_r & \cdots & x_i & \Box \\ \hline \\ \text{Multitape TM } M & & & & \\ \hline y_1 & \cdots & \cdots & y_s & \cdots & y_j & \Box \\ \hline \\ & & & & \\ \hline z_1 & \cdots & z_t & \cdots & z_k & \Box \\ \hline \end{array}$$

Single tape TM S

Single-tape TM: Initialization



S: On input
$$w_1 \dots w_n$$
:

Replace tape contents by $\#\dot{w}_1w_2\dots w_n\#\dot{\square}\#\dot{\square}\#$ Remember that M is in state q_0

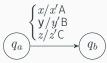
Single-tape TM: Simulating multitape TM moves

Suppose Multitape TM M moves like this:

We simulate the move on single-tape TM S like this

S given input
$$w_1 \dots w_n$$
:

Replace tape contents by $\#\dot{w}_1w_2\dots w_n\#\dot{\square}\#\dot{\square}$


Remember (in state) that M is in state q_0

S simulates a step of M:

Make a pass over tape to find \dot{x} , \dot{y} , \dot{z}

$$#x_1x_2 \dots \dot{x} \dots x_i #y_1y_2 \dots \dot{y} \dots y_j #z_1z_2 \dots \dot{z} \dots z_k #$$

If M at state q_a has transition

update state/tape accordingly

If M reaches accept (reject) state, S accepts (rejects)

Simulation

To simulate a model *M* by another model *N*:

Say how the state and storage of N is used to represent the state and storage of M

Say what should be initially done to convert the input of N

Say how each transition of M can be implemented by a sequence of transitions of N