Context-free Grammars

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2020

Chinese University of Hong Kong

Precedence in Arithmetic Expressions

```
bash$ python
Python 2.7.9 (default, Apr 2 2015, 15:33:21)
>>> 2+3*5
17
```


Grammars describe meaning

 $EXPR \rightarrow EXPR + TERM$

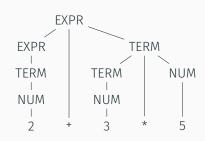
 $EXPR \rightarrow TERM$

TERM → TERM * NUM

 $\mathsf{TERM} \to \mathsf{NUM}$

 $NUM \rightarrow 0-9$

rules for valid (simple) arithmetic expressions



Rules always yield the correct meaning

Grammar of English

$SENTENCE \rightarrow NOUN-PHRASE VERB-PHRASE$

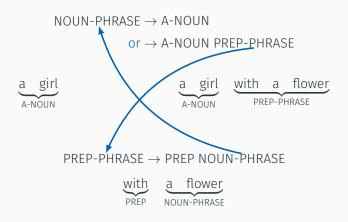
NOUN-PHRASE \rightarrow A-NOUN or \rightarrow A-NOUN PREP-PHRASE

Grammar of English

NOUN-PHRASE
$$\rightarrow$$
 A-NOUN or \rightarrow A-NOUN PREP-PHRASE

 $\mathsf{PREP}\text{-}\mathsf{PHRASE} \to \mathsf{PREP}\;\mathsf{NOUN}\text{-}\mathsf{PHRASE}$

Grammar of English



Recursive structure

Grammar of (parts of) English

SENTENCE → NOUN-PHRASE VERB-PHRASE

NOUN-PHRASE → A-NOUN

NOUN-PHRASE → A-NOUN PREP-PHRASE

VERB-PHRASE → CMPLX-VERB

VERB-PHRASE → CMPLX-VERB PREP-PHRASE

PREP-PHRASE → PREP A-NOUN

A-NOUN → ARTICLE NOUN

CMPLX-VERB → VERB NOUN-PHRASE

CMPLX-VFRB → VFRB

ARTICLE \rightarrow a

ARTICLE \rightarrow the

 $NOUN \rightarrow boy$

 $NOUN \rightarrow girl$

 $NOUN \rightarrow flower$

VERB → likes

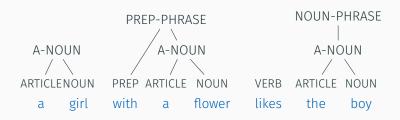
 $VERB \rightarrow touches$

 $VERB \rightarrow sees$

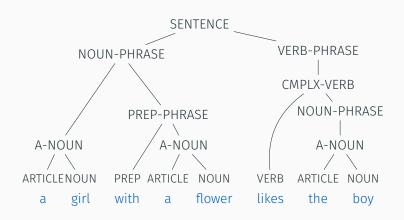
 $\mathsf{PREP} \to \mathsf{with}$

The meaning of sentences

The meaning of sentences



The meaning of sentences



Context-free grammar

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

A, B are variables 0, 1 are terminals $A \rightarrow 0A1$ is a production A is the start variable

$$A\Rightarrow 0A1\Rightarrow 00A11\Rightarrow 000A111\Rightarrow 000B111\Rightarrow 000#111$$
 derivation

Context-free grammar

A context-free grammar is given by (V, Σ, R, S) where

- *V* is a finite set of variables or non-terminals
- Σ is a finite set of terminals
- $\cdot R$ is a finite set of productions or substitution rules of the form

$$A \to \alpha$$

A is a variable and α is a string of variables and terminals

• $S \in V$ is a variable called the start variable

Notation and conventions

$$E \rightarrow E + E$$
 $N \rightarrow 0N$
 $E \rightarrow (E)$ $N \rightarrow 1N$
 $E \rightarrow N$ $N \rightarrow 0$
 $N \rightarrow 1$

shorthand:

$$E \rightarrow E + E \mid (E) \mid N$$

$$N \rightarrow 0N \mid 1N \mid 0 \mid 1$$

conventions:

variables in UPPERCASE start variable comes first

Variables: *E, N*Terminals: +, (,), 0, 1

Start variable: E

Derivation

derivation: a sequential application of productions

$$E\Rightarrow E+E$$

$$\Rightarrow (E)+E$$

$$\Rightarrow (E)+N$$

$$\Rightarrow (E)+1$$

$$\Rightarrow (E+E)+1$$

$$\Rightarrow (N+E)+1$$

$$\Rightarrow (N+N)+1$$

$$\Rightarrow (N+1N)+1$$

$$\Rightarrow (N+10)+1$$

$$\Rightarrow (1+10)+1$$

$$E \rightarrow E + E \mid (E) \mid N$$

$$N \rightarrow 0N \mid 1N \mid 0 \mid 1$$

 $\begin{array}{l} \alpha \Rightarrow \beta \\ \text{application of one} \\ \text{production} \end{array}$

Derivation

derivation: a sequential application of productions

$$E\Rightarrow E+E$$

$$\Rightarrow (E)+E$$

$$\Rightarrow (E)+N$$

$$\Rightarrow (E)+1$$

$$\Rightarrow (E+E)+1$$

$$\Rightarrow (N+E)+1$$

$$\Rightarrow (N+N)+1$$

$$\Rightarrow (N+1N)+1$$

$$\Rightarrow (N+10)+1$$

$$\Rightarrow (1+10)+1$$

$$E \rightarrow E+E \mid (E) \mid N$$

$$N \rightarrow 0N \mid 1N \mid 0 \mid 1$$

$$\alpha \Rightarrow \beta$$
application of one production

application of one

$$E \stackrel{*}{\Rightarrow} (1+10)+1$$

$$\alpha \stackrel{*}{\Rightarrow} \beta$$
 derivation

Context-free languages

The language of a CFG is the set of all strings at the end of a derivation

$$L(\mathit{G}) = \{ w \in \Sigma^* \mid \mathit{S} \stackrel{*}{\Rightarrow} \mathit{w} \}$$

Questions we will ask:

I give you a CFG, what is the language?

I give you a language, write a CFG for it

$$\begin{array}{l} A \rightarrow 0 A 1 \mid B \\ B \rightarrow \# \end{array}$$

Can you derive:

00#11

#

00#111

00##11

$$A \rightarrow 0A1 \mid B$$
$$B \rightarrow \#$$

Can you derive:

00#11
$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

$A \Rightarrow B \Rightarrow \#$

00#111

00##11

$$\begin{array}{c} A \rightarrow 0 A \mathbf{1} \mid B \\ B \rightarrow \# \end{array}$$

$$L(G) = \{0^n \# 1^n \mid n \geqslant 0\}$$

Can you derive:

00#11
$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$$

$A \Rightarrow B \Rightarrow \#$

00#111 No: uneven number of 0s and 1s

00##11 No: too many #

()

$$S o SS \mid (S) \mid arepsilon$$
 Can you derive
$$(()())$$

$$S \rightarrow SS \mid (S) \mid \varepsilon$$

Can you derive

 $() \qquad \qquad (()())$

$$S \Rightarrow (S)$$

$$\Rightarrow ()$$

$$\Rightarrow (SS)$$

$$\Rightarrow ((SS))$$

$$\Rightarrow ((S)(S))$$

$$\Rightarrow ((S)(S))$$

$$\Rightarrow ((S)(S))$$

$$\Rightarrow ((S)(S))$$

$$\Rightarrow ((S)(S))$$

Parse trees

$$S \rightarrow SS \mid (S) \mid \varepsilon$$

A parse tree gives a more compact representation

$$S \Rightarrow (S)$$

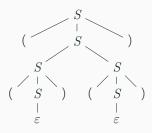
$$\Rightarrow (SS)$$

$$\Rightarrow ((S)S)$$

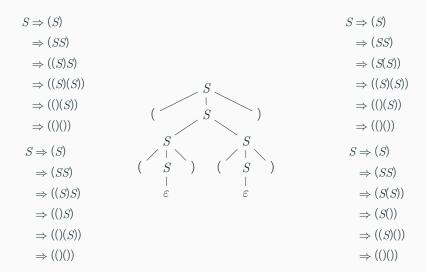
$$\Rightarrow ((S)(S))$$

$$\Rightarrow (()(S))$$

$$\Rightarrow (()(S))$$



Parse trees



One parse tree can represent many derivations

$$S \rightarrow SS \mid (S) \mid \varepsilon$$

Can you derive

(()()

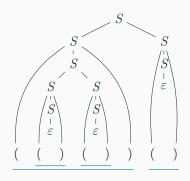
())(()

$$S \to SS \mid (S) \mid \varepsilon$$
 Can you derive
$$(()() \qquad \text{No: uneven number of (and)}$$

$$())(() \qquad \text{No: some prefix has too many)}$$

$$S \rightarrow SS \mid (S) \mid \varepsilon$$

 $L(G) = \{w \mid w \text{ has the same number of (and)}$ no prefix of w has more) than (}



Parsing rules:

Divide w into blocks with same number of (and)

Each block is in L(G)

Parse each block recursively

$$L = \{0^n 1^n \mid n \geqslant 0\}$$

These strings have recursive structure

$$L = \{0^n 1^n \mid n \geqslant 0\}$$

These strings have recursive structure

00001111

000111

0011

01

ε

$$S \rightarrow \text{O}S\text{1} \mid \varepsilon$$

$$L=\{\mathbf{0}^n\mathbf{1}^n\mathbf{0}^m\mathbf{1}^m\mid n\geqslant 0, m\geqslant 0\}$$

$$L = \{0^n 1^n 0^m 1^m \mid n \geqslant 0, m \geqslant 0\}$$

These strings have two parts:

$$L = L_1 L_2$$

$$L_1 = \{0^n 1^n \mid n \ge 0\}$$

$$L_2 = \{0^m 1^m \mid m \ge 0\}$$

 $S \to S_1 S_1$ $S_1 \to 0 S_1 1 \mid \varepsilon$

rules for $L_1: S_1 \to 0S_1$ 1 | ε L_2 is the same as L_1

$$L=\{\mathbf{0}^n\mathbf{1}^m\mathbf{0}^m\mathbf{1}^n\mid\, n\geqslant 0, m\geqslant 0\}$$

$$L = \{0^n 1^m 0^m 1^n \mid n \geqslant 0, m \geqslant 0\}$$

These strings have a nested structure:

outer part: $0^n 1^n$ inner part: $1^m 0^m$

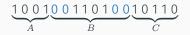
$$S \rightarrow 0S1 \mid I$$
$$I \rightarrow 1I0 \mid \varepsilon$$

 $L = \{x \mid x \text{ has two 0-blocks with the same number 0s}\}$

01011, 001011001, 10010101000 allowed 11001000, 01111 not allowed

A: cannot end in 0

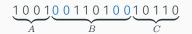
C: cannot begin with 0



$$\begin{split} S &\to ABC \\ A &\to \varepsilon \mid U 1 \\ U &\to 0 \, U \mid 1 \, U \mid \varepsilon \\ C &\to \varepsilon \mid 1 \, U \end{split}$$

A: ε , or ends in 1 C: ε , or begins with 1

U: any string



$$S \rightarrow ABC$$

$$A \rightarrow \varepsilon \mid U1$$

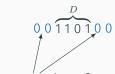
$$U \rightarrow 0U \mid 1U \mid \varepsilon$$

$$C \rightarrow \varepsilon \mid 1U$$

$$B \rightarrow 0D0 \mid 0B0$$

$$D \rightarrow 1U1 \mid 1$$

A: ε , or ends in 1 C: ε , or begins with 1 U: any string B has recursive structure



same number of 0s at least one 0

D: begins and ends in 1