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Abstract—Trojans and backdoors inserted by untrusted
foundries have become serious threats to hardware security.
Split manufacturing is proposed to hide important circuit
structures and prevent Trojan insertion by fabricating partial
interconnections in trusted foundries. Existing split manufactur-
ing frameworks, however, usually lack security guarantee and
suffer from poor scalability. It is observed that inserting dummy
cells and wires can have high potential on overcoming the security
and scalability problems of existing methods, but it is not com-
patible with current security definition. In this paper, we focus
on answering the questions on how to define the notion of secu-
rity and how to realize the required security level effectively and
efficiently when the insertion of dummy cells and wires is consid-
ered. We first generalize existing security criterion by modeling
the split manufacturing process as a graph problem. Then, a
sufficient condition is derived for the proposed security criterion
to avoid the computationally intensive operations in traditional
methods. To further enhance the scalability of the framework, we
propose a secure-by-construction split manufacturing flow. For
the first time, a novel mixed-integer linear programming (MILP)
formulation is proposed to simultaneously consider cell and wire
insertion together with wire lifting. A Lagrangian relaxation
algorithm with a minimum-cost flow transformation technique
is employed to solve the MILP formulation efficiently. With
extensive experiments, our framework demonstrates significantly
better efficiency, overhead reduction, and security guarantee
compared with the previous state-of-the-art.

Index Terms—k-isomorphism, Lagrangian relaxation (LR),
mixed-integer linear programming (MILP) formulation, simul-
taneous cell and wire insertion, split manufacturing, Trojan
prevention.

I. INTRODUCTION

W ITH the globalization of the integrated circuit sup-
ply chain, the design complexity, and cost of design
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houses have been reduced significantly. However, many emerg-
ing security vulnerabilities have come along as well, including
hardware Trojans [1]–[4], reverse engineering [5], [6], and
so on, resulting in economic losses in the order of billions
of dollars annually. Hardware Trojans inserted by untrusted
foundries are extremely harmful to the system security, while
the detection of such hardware Trojans remains to be very
difficult. Therefore, how to prevent the Trojan insertion by
untrusted foundries is becoming a very critical issue.

To prevent Trojan insertion proactively, split manufactur-
ing is proposed [7]–[17]. In the split manufacturing process,
the circuit layout is split into front-end-of-line (FEOL) layers,
which consist of all the cells and interconnections in lower
metal layers, and back-end-of-line (BEOL) layers, which con-
sist of all the interconnections in higher metal layers. Because
the fabrication of BEOL layers usually requires less advanced
technologies, it is affordable to maintain such trusted foundries
for the BEOL layer fabrication, by which important circuit
information can be hidden to prevent Trojan insertions by
untrusted foundries.

In recent years, different split manufacturing frameworks
have been proposed. The first formal security criterion for split
manufacturing against Trojan insertion, named as k-security,
is proposed in [13]. A circuit is defined to be k-secure if for
each cell in the original netlist, there exist k cells in the FEOL
layers that can be its actual physical implementation and are
indistinguishable to the attackers. The security definition is
formalized based on graph isomorphism [18], as will be dis-
cussed in Section III. To realize k-security, a greedy algorithm
is also proposed to determine the wires to be lifted from the
FEOL layers to the BEOL layers. In [19]–[24], techniques
in physical synthesis stage, including fault-analysis-based pin
swapping, placement perturbation, and so on, are proposed to
prevent the untrusted foundries from reverse engineering the
hardware intellectual property. These methods are proposed
under another orthogonal attack model, the main target of
which is to prevent reverse engineering by untrusted foundries.
It is currently not clear how these proposed methods can be
leveraged for hardware Trojan prevention.

Despite the extensive researches on split manufacturing,
existing approaches still suffer from insufficient security guar-
antee, poor computational efficiency, and large performance
overhead as will be detailed in Section II. In this paper,
besides wire lifting, the insertion of dummy cells and wires are
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considered simultaneously to address the security and practi-
cality issues of existing methods. Considering existing security
criterion cannot model the situation, where FEOL layers con-
tain cells and wires that do not exist in the original netlist, we
propose a new criterion that is fully compatible with the inser-
tion of dummy nodes and wires. Our security criterion can also
balance the tradeoff between security and overhead by allow-
ing the flexibility of protecting any arbitrary subset of circuit
nodes. We further derive a sufficient condition for the security
criterion to avoid the computationally intensive graph isomor-
phism checking and enable an efficient security realization. To
realize the security criterion while minimizing the introduced
overhead, we propose a holistic framework. Our framework
consists of a novel mixed-integer linear programming (MILP)
formulation for the FEOL layer generation and a Lagrangian
relaxation (LR) algorithm [25], [26] to significantly speedup
the generation process. A layout refinement technique is also
proposed to guarantee security in the physical synthesis stage.
We summarize our contributions as follows.

1) A new security criterion fully compatible with cell and
wire insertion is proposed with its sufficient condi-
tion derived to enable an efficient split manufacturing
process.

2) An MILP-based formulation is proposed to generate the
FEOL layers considering dummy cell and wire insertion
with wire lifting simultaneously and further accelerated
with an LR-based algorithm.

3) A layout refinement technique is proposed to guarantee
security in the physical synthesis stage.

4) The proposed flow is validated by extensive experi-
mental results and demonstrates good efficiency and
practicality.

The rest of this paper is organized as follows. Section II
defines the attack model and describes an example to illus-
trate the motivation of this paper and the state-of-the-art split
manufacturing flow in detail. Section III formally formulates
the split manufacturing problem and defines our new security
criterion. Section IV proposes a sufficient condition to achieve
the proposed criterion. Section V describes our split manufac-
turing framework. Section VI demonstrates the performance
of the framework, followed by the conclusion in Section VII.

II. PRELIMINARY

In this section, the attack model of untrusted foundries is
first reviewed. A motivating example is analyzed to explain
the insufficiency when only wire lifting is considered in the
split manufacturing flow. We also describe the state-of-the-art
FEOL generation flow proposed in [13] in detail.

A. Attack Model of Untrusted Foundries

We consider attackers from untrusted foundries that target
at inserting malicious hardware Trojans into the design. We
assume the following attack model as described in [13].

1) The attacker has the gate-level netlist of the design.
2) The attacker has full knowledge of the FEOL layers,

including the cells and wires in lower metal layers as
well as their physical information.

(a) (b) (c)

Fig. 1. Motivating example of split manufacturing process and the insuf-
ficiency of state-of-the-art framework. (a) Original netlist. (b) FEOL layers
generated by the original flow. (c) FEOL layers generated by our new frame-
work (nodes with the same colors have the same functionalities and the dotted
lines indicate the inserted dummy edges).

3) The attacker knows the algorithms of generating the
FEOL layers but does not know the specific mapping
between the cells in the FEOL layers and the original
netlist.

The assumption on the knowledge of the gate-level netlist is
pretty strong but indeed possible. The main reason is that
the attackers who intend for such Trojan insertion can poten-
tially be resourceful enough to have malicious observers in
the design stage [13]. Meanwhile, the profit of a successful
Trojan insertion can also be pretty large, especially for mili-
tary applications [27]. Given the gate-level netlist, the attackers
can first determine the target gates in the design for the Trojan
insertion. Then, the attackers will try to identify the physical
implementation of the target gates based on the information
of the FEOL layers and insert the Trojan.

B. Motivating Example

As described in Section II-A, given the information on the
original circuit netlist and the FEOL layers, the attackers can
try to locate the actual implementation for the target gates
identified in the original netlist. According to [13], the attack
process can be formulated as searching for a bijective mapping
of gates in the FEOL layers to the gates in the original netlist.
Consider the circuit netlist as shown in Fig. 1(a) and the FEOL
layers shown in Fig. 1(b). There exist four distinct bijective
mappings between the FEOL layers and the original netlist,
i.e., f1 : {1, 2, 3, 4, 5} → {1′, 2′, 3′, 4′, 5′}, f2 : {1, 2, 3, 4, 5} →
{1′, 3′, 2′, 4′, 5′}, f3 : {1, 2, 3, 4, 5} → {1′, 2′, 3′, 5′, 4′}, and
f4 : {1, 2, 3, 4, 5} → {1′, 3′, 2′, 5′, 4′}. Following the current
mapping relations, both Gates 2′ and 3′ in the FEOL layers
can be mapped to Gate 2. From the attacker’s perspective,
both Gates 2′ and 3′ can implement Gate 2 in the original
netlist. Therefore, if the attacker targets at Gate 2 for the
Trojan insertion, his capability to accurately insert the Trojan
is significantly weakened.

However, there are at least two problems with the FEOL
layers in Fig. 1(b). On one hand, for Gate 1, only 1′ in the
FEOL layers share the same functionality, which indicates the
attacker can always determine its identity. In fact, because
the other gates in the original netlist all have different func-
tionalities compared to Gate 1, simply by lifting wires to the
BEOL layers can never help enhance the security of Gate 1.
On the other hand, in Fig. 1(b), all the wires are lifted to
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Fig. 2. Traditional split manufacturing flow.

the BEOL layers. Because there are usually much fewer rout-
ing resources in higher metal layers, design houses are forced
to either increase the number of layers fabricated in trusted
foundries or reduce the area utilization to mitigate the routing
congestion in higher metal layers, both of which increase the
overhead of split manufacturing significantly.

In this paper, we propose a new framework that consid-
ers dummy gate and wire insertion simultaneously with the
wire lifting. Consider the FEOL layers shown in Fig. 1(c). A
dummy gate D′ of the same gate type as 1 is inserted. Two
dummy wires (3′, D′) and (4′, D′) are inserted to the FEOL
layers as well. In this way, for any gate targeted by the attacker
in the original circuit, there are two gates that cannot be dis-
tinguished in the FEOL layers. Meanwhile, only two wires,
i.e., (4′, 2′) and (4′, 3′), are lifted to the BEOL layers while
the number of wires in the FEOL layers remain the same as
that in the original netlist. Thereby, the two drawbacks of the
original framework [13] can be well solved.

However, it should be noted that due to the insertion of
dummy gates and wires, the bijective mappings between the
original netlist and the FEOL layers do not hold anymore,
which means the original formalization of the attack process
and the definition of security criterion cannot be applied any-
more. In Section III, we will propose our new formulation
for the split manufacturing protection and the Trojan insertion
attack.

C. State-of-the-Art Split Manufacturing Flow

In Section II-B, we use a motivating example to compare
the FEOL layers generated by the original flow and our frame-
work. In this section, we will review the process of the FEOL
layer generation proposed in [13]. Consider the original netlist
shown in Fig. 2. To determine the wires to be lifted to the
BEOL layers, the proposed framework starts by lifting all the
wires to the BEOL layers first. Then, it adds the wires back
to the FEOL layers iteratively following a greedy selection
strategy. In each iteration, it tries to add each wire back to
the FEOL layers, and then determine the security level for the
current FEOL layers. The wire that provides the best security
level will be selected and added back to the FEOL layers. The
procedure continues until the security level can no longer be
satisfied.

TABLE I
NOTATIONS USED FOR SECURITY DEFINITION AND ANALYSIS

The state-of-the-art split manufacturing flow suffers from
scalability issue. As described above, in each iteration, to
determine the security level when a wire is added back, repeti-
tive checking is carried out to search for the bijective mappings
between the whole circuit and the FEOL layers. Although it
can be elegantly formulated as a satisfiability problem, the
computation cost makes the method intractable quickly even
for small benchmark circuits. In this paper, we target at solving
all the above-mentioned problems of the existing method to
provide better security guarantee, reduce the introduced over-
head, and enhance the scalability of the split manufacturing
flow.

III. SPLIT MANUFACTURING SECURITY ANALYSIS

In this section, we will formulate the split manufacturing
problem as a graph problem. To accommodate the insertion
of dummy cells and wires, we will formally define the split
manufacturing process and the attack process, and propose a
new security criterion. For convenience, some notations used
in this paper are summarized in Table I, which will be defined
and explained in detail in this section.

A circuit can be regarded as a graph G = 〈V, E, �, ω〉.
V is the set of vertices, with each vertex corresponding to one
circuit node. E is the set of directed edges corresponding to
the wires in the circuit. Label function � : V → [t] maps each
vertex to a cell type, where [t] = {1, . . . , t} denotes the set of
all possible cell types in the circuit. ω : V → {0, 1} assigns
a binary weight to each vertex with ω(v) = 1 indicating that
the vertex v is selected for protection. ω is defined to make
the framework flexible to protect a subset of circuit nodes1

due to overhead constraints and balance the tradeoff between
security and the introduced overhead.

The original netlist and the generated FEOL layers can be
represented as two graphs. For the graph representation of the
original circuit, denoted as G, VG, EG, and �G are straightfor-
ward to define. ωG is determined by the designer considering
the circuit functionality, overhead constraints and so on. To
determine these parameters for the graph representation of the
FEOL layer, denoted as H, we need to consider its gener-
ation process. To generate H, for each v ∈ VG, we add v′
to VH such that �H(v′) = �G(v) and ωH(v′) = ωG(v). We
denote v′ = φ(v) as the corresponding node for v, which rep-
resents the actual cell in FEOL that implements v in the netlist.
Meanwhile, for each (v, u) ∈ EG, we add (φ(v), φ(u)) to

1In this paper, nodes and cells are the same and used interchangeably.
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(a) (b)

Fig. 3. Example of (a) original graph G (nodes with red stroke have nonzero
weights) and (b) FEOL graph H. i1 and i2 are input pins while o1 and o2 are
output pins.

EH . Then, we consider the three operations for the generation
of H.

1) Wire Lifting: If (u′, v′) ∈ EH is lifted to BEOL, then,
EH = EH \ {(u′, v′)} with VH , �H and ωH unchanged.

2) Dummy Node Insertion: If u′ with the cell type �u′
is inserted, then, VH = VH ∪ {u′} with �H(u′) = �u′ ,
ωH(u′) = 0 and EH is unchanged.

3) Dummy Wire Insertion: If (u′, v′) is inserted, then, EH =
EH ∪ {(u′, v′)} with VH , �H and ωH unchanged.

It should be noted that to guarantee the circuit functionality
is not changed and to get rid of floating input pins, we only
allow inserting wires pointing to the dummy nodes. Based on
the description of the allowed operations, VH, EH, �H , and ωH

can be acquired accordingly.
Example 1: Consider an example of G and H in Fig. 3.

In G, we have nodes 1 and 2 with the same cell type, i.e.,
�G(1) = �G(2). Assume that we select nodes 1 and 5 for
protection, then, ωG(1) = ωG(5) = 1. To generate H, we first
add the corresponding nodes to H for each node in G, i.e.,
1′, 2′, 3′, 4′, 5′. Then, we add node 6′ and wire (4′, 6′) to H
and lift wire (2′, 5′). Therefore, we have ωH(1′) = ωG(1) = 1
and ωH(5′) = ωG(5) = 1. For the other nodes in H, we have
ωH(2′) = ωH(3′) = ωH(4′) = ωH(6′) = 0.

As described in Section II, to insert a Trojan, the attacker
will first select v ∈ VG based on the analysis of the design and
then, try to locate its corresponding node φ(v) in H. To formal-
ize the process of locating φ(v), state-of-the-art method [13]
leverages the concept of graph isomorphism.

Definition 1 (Graph Isomorphism): Two graphs G1 and
G2 are isomorphic if there exists a bijective mapping
f : VG1 → VG2 such that (u, v) ∈ EG1 if and only if
(f (u), f (v)) ∈ EG2 and �G1(u) = �G2(f (u)), �G1(v) =
�G2(f (v)).

Because only wire lifting is considered in existing methods,
we must have VH = VG and EH ⊆ EG. Therefore, there must
be a subgraph of G that is isomorphic to H, based on which
for each v ∈ VG, a set of nodes can be identified that may
implement v in FEOL. This enables the previous work [13] to
formally define the security criterion.

However, when the insertion of dummy wires and cells are
considered, the original isomorphic relation is not satisfied any
more. This is because H contains nodes and edges that do not
present in G so that VG 
= VH and EH � EG. To formalize
the relation between G and H, we first have the following
observations on the relations between H and G that always
hold.

1) ∀v ∈ VG, ∃v′ ∈ VH s.t. v′ = φ(v).

(a) (b)

Fig. 4. Example of (a) spanning subgraph Gs of G in Fig. 3(a) and
(b) induced subgraph Hs of H in Fig. 3(b).

2) ∀v′, u′ ∈ VH , if ∃u ∈ VG s.t. u′ = φ(u), then, if
∀(v′, u′) ∈ EH , then, there must exist v ∈ VG s.t.
v′ = φ(v) and (v, u) ∈ EG.

The first observation indicates that for each circuit node in G,
there must be one node in H that implements it. The second
observation indicates that if u′ ∈ VH is the corresponding node
of u in the netlist, then, for all the edges that points to u′, e.g.,
(v′, u′) ∈ EH , there must be v ∈ VG with v′ as the correspond-
ing node and v is connected to u in G. This is because we are
not allowed to add dummy edges pointing to the corresponding
node of u ∈ VG. For example, in Fig. 3, suppose 5′ = φ(5),
since we are not allowed to add any dummy edges pointing
to 5′, we must be able to find 3 ∈ VG such that 3′ = φ(3)

and (3, 5) ∈ EG. To formalize the relations described above,
we leverage the concept of spanning subgraph and induced
subgraph [28].

Definition 2 (Spanning Subgraph): A subgraph Gs of G is
referred to as a spanning subgraph if VGs = VG.

Definition 3 (Induced Subgraph): A subgraph Gs of G is
referred to as an induced subgraph if ∀(u, v) ∈ EG with u, v ∈
VG, (u, v) ∈ EGs if and only if u, v ∈ VGs .

Example 2: Consider an example shown in Fig. 4. Gs is a
spanning subgraph of G in Fig. 3(a) since VGs = VG. Hs in
Fig. 4(b) is an induced subgraph of H in Fig. 3(b) because for
any pair of nodes in Hs, if there exists an edge between them
in H, the edge also exists in Hs. For example, nodes 1′ and
3′ exist in Hs. Because (1′, 3′) ∈ EH , for Hs to be an induced
subgraph, we must have (1′, 3′) ∈ EHs .

Then, considering the spanning subgraph of G and the
induced subgraph of H, we define the relation of spanning
subgraph isomorphism as below.

Definition 4 (Spanning Subgraph Isomorphism): Given two
graphs G and H, we say that G is spanning subgraph isomor-
phic to H if there exists a spanning subgraph of G that is
isomorphic to an induced subgraph of H.

Spanning subgraph isomorphism defines the criterion for the
attackers to identify the corresponding node φ(v) in FEOL for
a target node v in the netlist. For example, in Fig. 4, since Gs

and Hs are isomorphic, G is spanning subgraph isomorphic to
H with 1, 2, 3, 4, 5 being matched to 2′, 1′, 4′, 3′, 6′, respec-
tively. Therefore, 2′ is possible to implement node 1 in the
final layout from the attacker’s point of view. We denote 2′ as
the candidate node for 1.

For the spanning subgraph isomorphism relation, there
is one additional constraint to consider. Because inserting
dummy wires pointing to the corresponding nodes in the FEOL
layers is not allowed, it is possible for some spanning subgraph
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(a) (b)

Fig. 5. Example on the weight and probability difference for different
candidate nodes.

isomorphism relation to be invalid. For example, consider G
and H as shown in Fig. 5. There exists a spanning subgraph
isomorphism relation that maps 1, 2, 3, 4 in G to 5′, 2′, 3′, 4′
in H, respectively. Following the current mapping, node 1′
becomes dummy. However, because 2′ is the corresponding
node of 2 in the current mapping and we are not allowed
to insert dummy edges pointing to the corresponding node,
(1′, 2′) must be an edge that exists in the original netlist, which
is contradictory to the conjecture that node 1′ is dummy. We
define the spanning subgraph isomorphism relations that sat-
isfy the constraints on wire insertion as valid isomorphism
relations. Only the valid isomorphism relations can enhance
the security against hardware Trojan insertion.

The proposed spanning subgraph isomorphism relation is
more general compared with the graph isomorphism relation.
When only wire lifting is considered, it reduces to the graph
isomorphism. It can also capture the situations where VG 
= VH

and EH � EG, which enables us to consider cell and wire
insertion in the split manufacturing process.

Because multiple spanning subgraph isomorphism relations
may exist between G and H, for v ∈ VG, a set of candi-
date nodes can be identified, denoted as the candidate set
C(v). For the nodes in the candidate set, the number of
spanning subgraph isomorphism relations that can map them
to the original node is different. For example, as shown in
Fig. 5, 1′, 3′, and 5′ are the candidate nodes for 3. For 1′,
there are two different isomorphism relations mapping it to 1,
i.e., f1 : {1, 2, 3, 4} → {1′, 2′, 3′, 4′} and f2 : {1, 2, 3, 4} →
{1′, 2′, 5′, 4′}. For 3′ and 5′, there is only one isomorphism
relation mapping each of them to 1, i.e., f3 : {1, 2, 3, 4} →
{3′, 4′, 1′, 2′} and f4 : {1, 2, 3, 4} → {5′, 4′, 1′, 2′}. The nodes
with a larger number of spanning subgraph isomorphism rela-
tions are more likely to be recognized and selected by the
attackers. Therefore, for v ∈ VG, we define the probability of
candidacy for v′ ∈ C(v) as

Pv
(
v′
) = |Sv

(
v′
)|

∑
u′∈C(v) |Sv(u′)| (1)

where Sv(v′) denotes the set of valid spanning subgraph iso-
morphism relations that maps v′ to v and | · | calculates the
cardinality of the set.

Besides the difference on the probability of candidacy, the
weight of the candidate nodes are also different. As shown in
Fig. 5, 1′, 3′, and 5′ are the candidate nodes for 3. Because
1′ and 3′ are the corresponding nodes of 1 and 3, they have
nonzero weights while for 5′, the weight is zero since it is
dummy.

Now, we propose our security criterion for a cell as follows
to capture the spanning subgraph isomorphism relation and
the observations above.

Definition 5 (k-Secure Cell): Given original graph G and
FEOL graph H, we say that v ∈ VG is k-secure with respect
to G and H if

∑

u′∈C(v)

Pv
(
u′
)
ωH
(
u′
) ≤ 1

k
.

Following the definition above, for each v ∈ VG with
k-security, the probability to pick a candidate node with a
nonzero weight from C(v) is limited within 1/k. In this way,
the difference on weight and the probability of candidacy are
enforced in the security criterion. Now, we define the security
criterion for the circuit netlist.

Definition 6 (k-Security): Given G and H, we say that
〈G, H〉 is k-secure if ∀v ∈ VG with ωG(v) = 1, v is k-secure
with respect to G and H.

By the above security criterion, we can guarantee that for
any node that the attackers may target at, the probability to
insert the Trojan into a node with a nonzero weight is always
no greater than 1/k. In this way, by making k large enough,
we can guarantee much higher cost and risk for the Trojan
insertion.

IV. k-SECURITY REALIZATION

To determine the spanning subgraph isomorphism relation,
isomorphism checkings between the subgraphs of G and H are
usually required, which can be very computation intensive. To
avoid direct graph comparison, we adopt recent progress in
privacy preserving network publishing [18] to derive a suffi-
cient condition for k-security. Our heuristic solution relies on
the following concept denoted as k-isomorphism [18].

Definition 7 (k-Isomorphism): A graph is k-isomorphic if it
consists of k disjoint isomorphic subgraphs.

For example, the graph H of FEOL in Fig. 3(b) is
2-isomorphic with VHs,0 = {1′, 3′, 5′} and VHs,1 = {2′, 4′, 6′}.
Specifically, we call nodes 1′ and 2′ in the same position of
Hs,0 and Hs,1. For 1′ and 2′, if 1′ ∈ C(1), then, 2′ ∈ C(1).
Moreover, we must have P1(1′) = P1(2′). Assume 1′ = φ(1),
then, if ω(2′) = 0, 1 is 2-secure with respect to G and H
in Fig. 3. Based on the observation, we have the following
lemma for a k-isomorphic graph.

Lemma 1: Given G and H = {Hs,0, . . . , Hs,k−1}, which is
k-isomorphic. ∀v ∈ VG with ωG(v) = 1 and φ(v) ∈ VHs,i ,
where i ∈ {0, . . . , k − 1}, if each u′ ∈ VHs,j(j 
= i), where u′
and φ(v) are in the same position of Hs,j and Hs,i, respec-
tively, satisfies ωH(u′) = 0, then, v is k-secure with respect to
G and H.

We prove Lemma 1 in the Appendix. Lemma 1 formalizes
the condition for v ∈ VG to be k-secure. Because we only
require the nodes with nonzero weight to be k-secure, we have
the following theorem for k-security.

Theorem 1: Given G and H, assume H = {Hs,0, . . . , Hs,k},
where {Hs,0, . . . , Hs,k−1} are k-isomorphic. G is k-secure with
respect to H if ∀v ∈ VG with ωG(v) = 1, the following
conditions are satisfied.
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(a) (b)

Fig. 6. Example for Theorem 1: G is 2-secure with respect to H.

1) φ(v) ∈ VHs,i where i ∈ {0, . . . , k − 1}.
2) ωH(u′) = 0, ∀u′ ∈ VHs,j(j ∈ {0, . . . , k−1}, j 
= i), where

u′ and φ(v) are in the same position of Hs,j and Hs,i,
respectively.

Example 3: Consider the example shown in Fig. 6. H is
composed of three subgraphs with Hs,0 and Hs,1 being iso-
morphic to each other. Nodes with nonzero weights like
3′, 5′, 6′, 9′ are either in Hs,0 or in Hs,1, while the weights
of the nodes in the same position as them, i.e., D, 2′, 7′, 8′
are zero. Therefore, they are 2-secure with respect to G and
H according to Lemma 1. Node 4 remains unprotected since
its weight is zero. Therefore, 〈G, H〉 is 2-secure. By introduc-
ing weights for each node and Hs,k, our framework is flexible
to protect an arbitrary subset of circuit nodes to balance the
tradeoff between security and the introduced overhead.

Theorem 1 works as a sufficient condition for the proposed
security criterion. It is not only fully compatible with the
insertion of dummy cells and wires, but also eliminates
the requirements and computation overhead of determining
the security level through graph isomorphism checkings in the
FEOL generation process. The remaining question is how to
effectively and efficiently achieve the requirements posed in
Theorem 1. In the next section, we will describe our split
manufacturing flow for the FEOL layer generation.

V. PRACTICAL FRAMEWORK FOR TROJAN PREVENTION

In this section, we propose our framework to generate the
FEOL and BEOL layers. The inputs to the framework includes
the original circuit netlist and the selected nodes for protection.
An MILP-based formulation, which considers the insertion of
dummy wires and gates with wire lifting simultaneously, is
first proposed to generate the k-secure FEOL layers. We further
propose a novel LR-based algorithm and a minimum-cost-
flow [26], [29], [30] transformation to enhance the scalability
of the framework. In the second step, we propose a layout
refinement technique, which enables us to leverage commer-
cial tools for physical synthesis while guarantee the security
in the placement stage.

A. MILP-Based FEOL Generation

Following the sufficient condition proposed in Theorem 1, to
achieve k-security, we need to generate H = {Hs,0, . . . , Hs,k}
from G so that all the nodes with nonzero weights are added to
the first k subgraphs. Because the insertion of dummy wires
and nodes is allowed, one trivial solution to generate H is

Algorithm 1 Iterative FEOL Generation
1: // Vr: the set of nodes that have not been inserted
2: Vcrit ← {v ∈ VG:ωG(v) = 1}, Vr ← VG;
3: while Vcrit 
= ∅ do
4: Vmin ← ∅, cmin ←+∞;
5: // [t]: the set of cell types
6: for i ∈ [t] do
7: Vi ← {v ∈ Vr:�(v) = i};
8: Vsel, csel ← NodeSelect(k, Vi);
9: if cmin > csel then

10: Vmin ← Vsel, cmin ← csel;
11: end if
12: end for
13: InsertToFEOL(Vmin, Hs,0, . . . , Hs,k−1);
14: Vcrit ← Vcrit \ Vmin, Vr ← Vr \ Vmin;
15: end while
16: Hs,k ← Vr;

to copy G for k − 1 times. This indicates that k-security can
always be achieved when the insertion of dummy cells and
wires is considered. However, such a naive solution usually
suffers from large overhead.

To reduce the introduced overhead, in this section, we pro-
pose a novel FEOL generation algorithm, whose pseudo code
is shown in Algorithm 1. Our algorithm anonymizes all the
selected nodes iteratively until all the nodes with nonzero
weights are added to Hs,0, . . . , Hs,k−1. In each iteration, we
select k nodes of the same label and make sure that exactly
one node has a nonzero weight to satisfy Theorem 1 (lines
4–10). To select the nodes, we first cluster all the remaining
nodes by their labels and then, select k nodes from each cluster
with the minimized cost through an MILP-based formulation.
The k nodes with the minimized cost among all the clusters
are selected and inserted to Hs,0, . . . , Hs,k−1 (line 11). The
iterative algorithm continues until all the nodes with nonzero
weights are added to Hs,0, . . . , Hs,k−1.

The core part of the FEOL generation algorithm is the
MILP-based node selection, i.e., NodeSelect. Before we
introduce our MILP formulation, we list the notations used in
the formulation in Table II and use the following example to
illustrate the iterative strategy and the problem that we will
solve in each iteration.

Example 4: Consider the original graph G in Fig. 6(a).
Assume nodes 0, 3, 5, 6, 9 are selected for protection and
the required security level is 2. To generate H from G, our
strategy is to iteratively anonymize the selected nodes with
nonzero weights by adding them to Hs,0 and Hs,1. As shown
in Fig. 7(a)–(c), in the first three iterations, nodes 0, 2, 6 and
nodes 1, 5, 7 are added to Hs,0 and Hs,1, respectively. For the
nodes in the same position in Hs,0 and Hs,1, e.g., 2 and 5 in the
first location, only one of them has a nonzero weight, which
follows the requirement in Theorem 1. In each iteration, to
select the nodes to insert into Hs,0 and Hs,1, we propose an
MILP-based formulation to select a pair of nodes that share
the same label and achieve the smallest insertion cost. We use
Fig. 7(c) to explain the MILP formulation. Consider node 9
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(a) (b) (c) (d)

Fig. 7. Example of the iterative strategy and the formulation in each iteration: (a)–(c) first three iterations (dotted lines are the wires to be lifted to BEOL
layers) and (d) parameters and formulation for the fourth iteration.

TABLE II
NOTATIONS USED IN THE MILP FORMULATION

that has a nonzero weight. To anonymize it, we can find nodes
8 and 4 of the same cell type as node 9 and also allow the
insertion of dummy nodes d0 and d1. If we add node 4 to Hs,0,
because edge (0, 4) exists in G, we have IN40 = {0}, which
indicates that there is one edge, i.e., (0, 4), pointing from the
0th location in Hs,0 to the current location that can be added to
Hs,0 if node 4 is inserted. Similarly, if we add node 9 to Hs,1,
because edge (7, 9) exists in G, we have IN91 = {3}. For the
dummy nodes D0, we have IND0 = {0, 1, 2} and OUTD0 = ∅.
This is because to retain the correct circuit functionality, we
allow inserting dummy edges connecting to the input of the
dummy nodes but forbid using the dummy nodes to drive other
nodes. Hence, we can determine IN and OUT for each node
following the rule, which is listed in Fig. 7(d). Meanwhile,
because (4, 9) is the only edge connecting node 4 to unadded
nodes, we have RES4 = {(4, 9)}. When node 4 is added, all
the edges in RES4 will need to be lifted to BEOL.

Now, we introduce our MILP formulation for the node
selection. We split the formulation into different parts to enable
an easy explanation. The objective function is to minimize the
cost of node selection

min
x,d

α
∑

i

|RESi|xi − βk
∑

l

(yl + zl)+ γ A
∑

j

dj. (2)

The cost function mainly consists of three parts: 1) the num-
ber of edges to be lifted to BEOL layers, i.e.,

∑
i |RESi| ∗ xi;

2) the number of edges that can be added back to the FEOL
layers, i.e., k

∑
l(yl+zl); and 3) the area of the inserted dummy

nodes A
∑

j dj. α, β, and γ are coefficients used to control
the tradeoff between dummy node insertion and wire lifting.
In our framework, to achieve better efficiency, a linear func-
tion is used as the optimization objective. By using a linear
function, we implicitly assume that the introduced overhead is
linearly dependent on the number of lifted wires and the area
of the dummy nodes. Meanwhile, the cost of the lifted wires
and the cost of the dummy nodes are assumed to be indepen-
dent. To capture the dependency between the lift wires and the
dummy nodes, a more complex nonlinear function is required,
which may not be convex and can be extremely computation-
intensive to optimize. We empirically find that with such a
linear objective function, our framework can already signif-
icantly reduce the introduced overhead compared with the
existing method. We leave in-depth research on the possibility
and advantage of using more complicated nonlinear functions
for the optimization objective as one of our future research
directions.

Now, we explain the constraints. For a node i, it can at
most be inserted into one subgraph, which is enforced by (3a).
Meanwhile, for the jth subgraph, we require exactly one node
to be inserted as enforced by (3b). We further pose the con-
straint in (3c) to ensure that exactly one node has a nonzero
weight to satisfy Theorem 1

k−1∑

j=0

xij = xi, ∀i (3a)

∑

i

xij + dj = 1, ∀j ∈ {0, . . . , k − 1} (3b)

∑

i

xiwi = 1. (3c)

Next, we need to determine the conditions for an edge
to be inserted back to the FEOL layers. Consider the edge
pointing from the lth position to the current position in
Hs,0, . . . , Hs,k−1. In the jth subgraph Hs,j, an edge pointing
from lth position can be added back under two conditions: 1)
a dummy cell is inserted to the current position and 2) node i
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with l ∈ INij is inserted. Furthermore, to satisfy the require-
ment on subgraph isomorphism, the edge pointing from the
lth position can be added back only when it can be added
back in all the k subgraphs. These two requirements can be
formalized with constraints (4a). Note 1l∈INij is the indica-
tor function that equals to 1 when l ∈ INij and equals to
0, otherwise. Similarly, for the edge pointing from the cur-
rent position to the lth position, we have almost the same
constraints as shown in (4b) except that the insertion of
dummy edges pointing to the corresponding nodes is no longer
allowed

yl ≤ ylj, ylj ≤
∑

i

xij · 1l∈INij + dj, ∀j, l

zl ≤ zlj, zlj ≤
∑

i

xij · 1l∈OUTij , ∀j, l.

The constraints can be further simplified by substituting ylj

and zlj, we have

yl ≤
∑

i

xij · 1l∈INij + dj, ∀j, l (4a)

zl ≤
∑

i

xij · 1l∈OUTij , ∀j, l. (4b)

Based on the explanation above, we have the fol-
lowing ILP formulation for the node selection and
insertion:

min
x,d

(2)

s.t. (3a)−(3c), (4a)−(4b).

While all the variables in the formulation, including xij, dj,
yl, and zl, should be integer variables, we can relax yl and zl

to be continuous without changing the optimal solution and
achieve a better efficiency. By continuing the process itera-
tively, we can insert all the nodes with nonzero weights into
the first k subgraphs while keeping the k subgraphs isomor-
phic at the same time. Then, we add all the remaining nodes
into Hs,k.

B. Lagrangian Relaxation Algorithm

The MILP-based formulation enables us to select and insert
k nodes to Hs,0, . . . , Hs,k−1 with a minimum cost for each
iteration. However, it is still computationally expensive and
suffers from unaffordable runtime for large benchmarks. We
observe that two constraints that are hard to solve are con-
straints (4a) and (4b). Therefore, to accelerate the framework,
we apply LR to relax the last two constraints and modify the
objective function as

α
∑

i,j

|RESi|xij − βk
∑

l

(yl + zl)+ γ A
∑

j

dj

+
∑

j,l

λjl

(

−
∑

i

xij · 1l∈INij − dj + yl

)

+
∑

j,l

μjl

(

−
∑

i

xij · 1l∈OUTij + zl

)

Algorithm 2 LR-Based Node Selection
Require: k: security level, V: the set of vertices to select.
Ensure: Vsel: selected vertices, csel: cost of vertex selection.

1: function NodeSelect(k, V)

2: λjl ← 0, μjl ← 0, it← 0;
3: while it ≤ itmax do
4: // See Section V-B1
5: Vsel, csel ← LagRelaxationSolve(V, λit

jl, μ
it
jl);

6: // See Section V-B2
7: λit+1

jl , μit+1
jl ← UpdateCoeff(λit

jl, μ
it
jl);

8: end while
9: end function

=
∑

i,j

(

α|RESi| −
∑

l

λjl · 1l∈INij −
∑

l

μjl · 1l∈OUTij

)

xij

+
∑

j

(

γ A−
∑

l

λjl

)

dj −
∑

l

⎛

⎝βk −
∑

j

λjl

⎞

⎠yl

−
∑

l

⎛

⎝βk −
∑

j

μjl

⎞

⎠zl. (5)

Here, μjl ≥ 0 and λjl ≥ 0 are the Lagrangian multipliers.
The constraints now only consist of constraints (3a)–(3c).
Compared with the original formulation, we remove the hard
constraints, i.e., constraints (4a) and (4b), and penalize the
constraint violations in the objective function by updating λjl

and μjl. By repeating the process of solving and updating the
new formulation, the node selection algorithm will progres-
sively converge to a legal solution to the original formulation.
The proposed algorithm is summarized in Algorithm 2.

1) Minimum-Cost Flow Transformation: For the new for-
mulation, given fixed Lagrangian multipliers λjl and μjl, one
important observation is that xij and dj become independent
with yl and zl. Therefore, we can decompose the new formula-
tion into two independent subproblems. The first subproblem
is defined as

min
x,d

(5)

s.t. (3a)−(3c)

where xij, xi, and dj are all binary variables. The second
subproblem is defined as

min
x,d
−
∑

l

⎛

⎝βk −
∑

j

λjl

⎞

⎠yl −
∑

l

⎛

⎝βk −
∑

j

μjl

⎞

⎠zl (6)

where yl and zl are binary variables.
The solution to the second subproblem can be acquired eas-

ily as below since the objective function is monotone with yl

and zl while yl and zl are independent given fixed λjl and μjl

for different l in each iteration

yl =
{

0, βk −∑j λjl < 0

1, otherwise

zl =
{

0, βk −∑j μjl < 0

1, otherwise.
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Fig. 8. Example of the minimum-cost flow formulation for node selection
(k = 2 in the example).

For the first subproblem, one notable merit is that it can be
transformed into a minimum-cost flow problem. Fig. 8 shows
an example of the constructed graph for the minimum-cost
flow problem. The variables, constraints, and objectives for
the first subproblem can be transformed to the concepts in the
flow problem. As shown in Fig. 8, VN represents the set of
vertices corresponding to the cells to be inserted, including the
remaining nodes, i.e., nodes 4, 8, and 9, and the dummy nodes,
i.e., D0 and D1. Vsub denotes the set of vertices corresponding
to the subgraphs, i.e., Hs,0 and Hs,1. Edges correspond to the
variables in the formulation. For example, (s, 4) corresponds
to x4 while (4, Hs,0) corresponds to x40. Each edge is marked
with the cost as well as the upper and lower bound of the
capacity in Fig. 8. While the capacity is determined by the
range of the variables, the cost for each edge is determined
following the coefficients in the objective function. It should
be noted that for some edges, both the upper and lower bound
of the capacity is 1, which means we require a nonzero flow
for the edge in the final solution. This indeed corresponds to
the constants in the constraints. For example, for (9, Hs,1),
which corresponds to x91 in the original formulation, the cost
becomes α|RES9|−∑l λ1l · 1l∈IN91 −

∑
l μ1l · 1l∈OUT91 , which

equals to α based on Fig. 7(d). Based on the transformation
above, we can easily verify all the constraints and the objective
in the original formulation can be realized in the minimum-
cost flow problem.

The minimum-cost flow transformation enables us to lever-
age efficient graph algorithms [30] to solve the originally
MILP problem. As we will show in Section VI, significant
runtime improvement can be achieved through the transfor-
mation.

2) Lagrangian Multiplier Update: One key step within the
current node selection framework shown in Algorithm 2 is
how to update the Lagrangian multiplier λjl and μjl after
each iteration. Various updating strategies may have differ-
ent convergence issues. Following [25], the most widely used
updating strategy for λjl and μjl is:

λit+1
jl = max

(

0, λit
jl + tit

(

yl −
∑

i

xij · 1INij − dj

))

(a) (b) (c)

Fig. 9. Comparison of the existing placement strategy and our layout refine-
ment strategy. (a) Original circuit graph. (b) Existing strategy only considers
the FEOL layers in the placement stage. (c) Our strategy adds virtual nets
to force a cell to be placed close to its neighbors (dotted blue lines are the
virtual nets).

μit+1
jl = max

(

0, μit
jl + tit

(

zl −
∑

i

xij · 1OUTij

))

where tit = 1/itη is the step size chosen for the update [25]
and η is a constant.

Ideally, by iteratively updating λ and μ, the number of
violations of the relaxed constraints can be reduced and the
objective function in (5) gradually converges. However, while
the number of violations indeed reduces significantly in the
first several iterations, we observe severe oscillation for the
objective function afterward. To overcome the convergence
problem, after the first several iterations, we modify the
original updating strategy as

λit+1
jl = λit

jl +max

(

0, tit

(

yl −
∑

i

xij · 1INij − dj

))

μit+1
jl = μit

jl +max

(

0, tit

(

zl −
∑

i

xij · 1OUTij

))

.

Our updating strategy increases λ and μ monotonically to
force the value of yl and zl toward 0 in order to resolve the
constrain violations and guarantee the convergence of the node
selection algorithm. By controlling the maximum iteration,
i.e., itmax, and the step size, i.e., η, we can control the tradeoff
between the solution quality and the runtime of the program.

C. k-Secure Layout Refinement

After solving the MILP-based formulation, cells and con-
nections in the FEOL layers H can be determined such that
〈G, H〉 is k-secure. The next step is to do physical synthe-
sis to generate the layouts for the FEOL and BEOL layers.
In the placement stage, existing commercial tools usually tar-
get at minimizing the total wirelength, and thus, tend to place
the cells with actual connections close to each other. This,
however, makes it possible for the attackers to recover the con-
nections in the BEOL layers based on the physical proximity
information [14], [19].

To guarantee the security while leveraging existing physical
synthesis tools, previous method [13] chooses to ignore the
lifted wires in the BEOL layers in the placement stage. For
example, consider the original circuit graph shown in Fig. 9(a),
following [13], only the FEOL graph shown in Fig. 9(b) is
considered in the placement stage. This helps to avoid the
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TABLE III
RUNTIME AND OVERHEAD COMPARISON BETWEEN THE MILP-BASED AND THE LR-BASED ALGORITHMS

impact of connections in the BEOL layers, and thus, forbids
the attacker from determining the identity of the nodes by
physical proximity information. Though secure, this method
can suffer from large overhead. This is because when the wire
connections in the BEOL layers are ignored, many cells in the
FEOL layers are left floating, e.g., nodes 3′, 4′, D in Fig. 9(b).
Therefore, the distances between the cells that are actually
connected in the BEOL layers, e.g., nodes 4′ and 9′, become
highly unoptimized.

To reduce the introduced wirelength overhead, we propose
a novel layout refinement technique in the placement stage. As
shown in Fig. 9(c), the basic idea of the refinement technique
is to insert virtual nets between the circuit nodes that may or
may not be connected in the original netlist, so that both the
physical proximity between originally connected nodes and the
indistinguishability among candidate nodes can be preserved.

More specifically, consider vi, uj ∈ VG with (vi, uj) ∈ EG

and i, j ∈ {0, . . . , k}. Their corresponding nodes v′i, u′j locate
in the ith and jth subgraph of H, respectively, i.e., v′i ∈ VHs,i ,
u′j ∈ VHs,j . Then, depending on i and j, there are following
situations.

1) When i = j = k, (v′i, u′j) must exist in the FEOL layers
and thus, no virtual nets need to be added.

2) When i = k and j 
= i, (v′i, u′j) is lifted to the BEOL
layers. ∀u′j′ ∈ VHs,i′ with u′j′ in the same position as u′j
and j′ ∈ {0, . . . , k − 1}, we insert a virtual net (v′i, u′j′).

3) When j = k and j 
= i, (v′i, u′j) is lifted to the BEOL
layers. ∀v′i′ ∈ VHs,i′ with v′i′ in the same position as v′i
and i′ ∈ {0, . . . , k − 1}, we insert a virtual net (v′i′ , u′j).

4) When i 
= k, j 
= k, and i = j, then, ∀v′i′ , u′i′ ∈ VHs,i′ with
v′i′ and u′i′ in the same positions as v′i and u′j, respectively,
and i′ ∈ {0, . . . , k − 1}, we insert a virtual net (v′i′ , u′i′).

5) When i 
= k, j 
= k, and i 
= j, we do not insert any
virtual nets.

Example 5: Consider the original graph and the FEOL
graph in Fig. 9(a) and (c). {0′, . . . , 9′} are the corresponding
nodes for {0, . . . , 9}, respectively. For (0, 4) ∈ EG, we have
0′ ∈ Hs,0 and 4′ ∈ Hs,2. Therefore, following the insertion rule
above, we insert two virtual nets, i.e., (0′, 4′) and (1′, 4′), in
the placement stage. Similarly, for (4, 9) ∈ EG, we also insert
two virtual nets, i.e., (4′, 8′) and (4′, 9′). For (3, 8) ∈ EG,
because both 3′ and 8′ locate in Hs,0, we insert virtual nets
(3′, 8′) and (D, 9′) to Hs,0 and Hs,1 For (1, 3) ∈ EG, because
3′ ∈ VHs,0 and 1′ ∈ VHs,1 , we do not insert any virtual nets in
this case.

By inserting the virtual nets, we not only guarantee the
security but also make sure a node is still placed close to its
neighbors. As we will show in Section VI, our layout refine-
ment technique allows for 49.6% overhead reduction compared
with the existing method [13]. In the placement stage, because
existing methods usually target at minimizing the total wire-
length, cells with actual connections tend to be placed close
to each other.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, we report on our experiments to demon-
strate the effectiveness of the proposed split manufacturing
framework. The input to our framework is a gate-level netlist
and the nodes to protect. In our experiments, to select the
nodes for protection, we follow the Trojan insertion methods
used by TrustHub [31]. Given the netlist, we first calculate
the signal probability, logic switching probability and observ-
ability for each circuit node, and then, select the nodes with
rare circuit events by comparing with a certain threshold. We
modify the threshold to change the portion of nodes for protec-
tion. Our benchmarks are selected from the ISCAS benchmark
suite [32] as well as the functional units (shifter, alu,
and div) from the OpenSPARC T1 processor, the detailed
statistics of which are shown in Table III. In our split man-
ufacturing scheme, following [22], FEOL layers consist of
all the cells and lower metal layers up to metal 3, while
BEOL layers consist of metal 4 and above. We implement our
framework in C++ and use GUROBI [33] and LEMON [34]
packages to solve the MILP problem and the minimum-cost
flow problem, respectively. We conduct physical synthesis
using Cadence Encounter [35]. All the experiments are car-
ried out on an eight-core 3.40 GHz Linux server with 32 GB
RAM. We set the runtime limit for all the algorithms to
1.5× 105 s.

B. FEOL Generation Strategy Comparison

We compare the proposed MILP-based and LR-based algo-
rithm with the previous method [13]. We set the required
security level to be 10 and protect 5% of all the cir-
cuit nodes. We also set α = 0.5, β = 2.0, and
γ = 0.6. The number of LR iterations is 10 in the LR-
based algorithm. We will demonstrate the impact of α, β,
and γ .
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(a)

(b)

Fig. 10. Comparison with [13] on the (a) wirelength and (b) area overhead
for different security levels.

(a)

(b)

Fig. 11. Runtime dependency on the (a) required security level and
(b) number of protected nodes.

We first compare the efficiency of the three algorithms.
In Table III, “RT” denotes the runtime, while “
Area” and
“
WL” denote the area and wirelength overhead compared
with the original circuit. As shown in Table III, on small

(a)

(b)

Fig. 12. Overhead comparison between our layout refinement technique
and [13]: (a) wirelength comparison and (b) wirelength distribution for div.

Fig. 13. Distance difference comparison with [13].

benchmarks, compared with [13], the LR-based algorithm
achieves 27 000× speedup. For large benchmarks, while [13]
cannot finish within the predefined time threshold, our LR-
based algorithm can finish within 210 s. Compared with the
MILP-based algorithm, as shown in Table III, the LR-based
algorithm can achieve on average 9.90× speedup.

We also explore the runtime dependency of the MILP-based
and LR-based algorithms on the required security level k and
the portion of the protected nodes. We choose the benchmark
shifter for the study. As shown in Fig. 11(a) and (b), LR-
based algorithm achieves better scalability compared with the
MILP-based algorithm. In Fig. 11(b), when the portion of pro-
tected nodes exceeds 18%, the MILP-based algorithm cannot
be finished within the predefined time threshold, while it only
takes 230 s for the LR-based algorithm to finish.
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(a) (b) (c)

Fig. 14. Relation between overhead and (a) portion of protected nodes, (b) security level, and (c) MILP coefficients.

We then compare the overhead introduced by the three
algorithms on different benchmarks as shown in Table III.
For the two small benchmarks, our MILP-based algorithm
introduces on average 104% less wirelength overhead com-
pared with the previous method with on average 3.97% area
overhead reduction. The area and wirelength overhead intro-
duced by the MILP-based and ILP-based algorithms are very
similar.

We then compare the overhead increase with the change of
the required security level k. We use the benchmark c432 as
an example due to the runtime limit of the previous method. As
shown in Fig. 10, with the increase of k, the introduced area
and wirelength overhead of all the three methods increases
significantly. Specifically, when k is small, e.g., k equals to
5, 10, or 15, our MILP-based method achieves much bet-
ter wirelength overhead reduction with a slightly larger area
overhead. When k is larger than 15, the previous method can-
not generate the FEOL layers for the required security level,
while our MILP-based method can guarantee to achieve all
the required security level. Meanwhile, we also observe that
with the increase of k, the difference on the introduced over-
head by the MILP-based and LR-based algorithms becomes
larger.

C. Physical Synthesis Comparison

We then compare our placement refinement strategy based
on the virtual net insertion with the original method proposed
in [13]. The FEOL layers are generated with our MILP-based
algorithm following the settings in Section VI-B. In Fig. 12(a),
we show the routed wirelength for three different strate-
gies, including direct placement without considering k-security
(“Orig”), our placement refinement method (“Ours”) and the
previous method [13]. Compared with previous method, our
placement refinement strategy provides on average 97.5%
wirelength overhead reduction. The overhead introduced by
the three algorithms are the same. For the large benchmark
div, our method achieves around 120% wirelength overhead
reduction. To understand the origin of the large wirelength
reduction, we plot the wirelength distribution for different nets
in benchmark div in Fig. 12(b). As we can see, by inserting
the virtual nets, the wirelengths between the neighboring cells
are reduced significantly.

D. Physical Proximity Examination

We then carry out physical proximity checking to examine
the security of the layout of the FEOL layers. In our frame-
work, all the nodes in Hs,k are unprotected and their identity
can be determined exactly by the attackers. For example in
Fig. 9, node 4′ can be identified as the corresponding node
for node 4. To guarantee security, we need to prevent the
attackers from identifying the protected nodes based on the
identified unprotected nodes. For instance, while node 9′ is
connected to node 4′ in the BEOL layers in Fig. 9, we hope
that the distance between node 8′ and 4′ to be close to the
distance between node 9′ and 4′. We select the benchmark
div and set the security level to be 10. We then compare
the selected nodes and their candidate nodes on the physical
proximity to their neighbors. The distribution of the distance
difference is shown in Fig. 13. As we can see, the distance
difference is distributed symmetrically around 0, which indi-
cates similar distance is achieved for the protected nodes and
their candidates. This distance similarity makes the identifi-
cation of the protected nodes to be nearly impossible. If we
simply selected the nodes that are closest to the identified
nodes, then, in all the benchmarks listed in Table III, we
find the number of nodes that can be correctly identified is
0. The results indicate the requirement posed by k-security
is much higher than that of the proximity attacks, which is
also the origin of the large overhead introduced to achieve
k-security.

E. Relation Between Overhead and Framework Parameters

At last, we study the change of overhead as the increase of
the security level k, the number of protected nodes and the
coefficients γ in the MILP formulation. We use shifter
benchmark as an example. In Fig. 14(a), to achieve 10-security,
we show the increase of the overhead with the increase of the
protected nodes. In Fig. 14(b), we show the relation between
overhead and the required security level in order to protect 5%
of nodes. In Fig. 14(c), we fix α = 0.5 and β = 2.0 in the
MILP formulation and change γ from 0.6 to 1.4. By changing
γ , cell insertion and wire lifting are balanced to help provide
better usage of the routing resources and the chip space for
different designs.
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VII. CONCLUSION

In this paper, we propose a framework to enhance the secu-
rity and practicality of split manufacturing. A new security
criterion is proposed and its sufficient condition is obtained
to enable more efficient realization. To realize the sufficient
condition, wire lifting, dummy cell, and wire insertion are con-
sidered simultaneously through a novel MILP formulation for
the first time. Layout refinement that is fully compatible with
existing physical design flow is also proposed. The proposed
framework achieves much better efficiency, overhead reduc-
tion, and security guarantee compared with existing methods.

APPENDIX

PROOF OF LEMMA 1

Consider v ∈ VG with ωG(v) = 1 and H =
{Hs,0, . . . , Hs,k−1}, which is k-isomorphic. Recall C(v) denotes
the candidate set of v and for each v′ ∈ C(v), the probabil-
ity of candidacy, i.e., Pv(v′), is defined in (1). For v′ ∈ C(v),
without loss of generality, we assume v′ ∈ VHs,0 . Then, in
Hs,1, . . . , Hs,k−1, there must be k− 1 other nodes in the same
position as v′ that are also in C(v) and have the same prob-
ability of candidacy. Let Li(v) be the set of positions of the
nodes in Hs,i that are in C(v), for i ∈ {0, . . . , k−1}. Then, we
have L0(v) = . . . = Lk−1(v).

Let VHs,i(j) be the node in the jth position of Hs,i,
then, from the definition of the probability of candidacy,
we have

∑

v′∈C(v)

Pv
(
v′
) =

k∑

i=0

∑

j∈Li(v)

Pv
(
VHs,i(j)

)

= k
∑

j∈L0(v)

Pv
(
VHs,0(j)

)

= 1.

Therefore,
∑

j∈L0(v)

Pv
(
VHs,0(j)

) = 1

k
.

Meanwhile,

∑

v′∈C(v)

Pv
(
v′
)
ωH
(
v′
) =

k−1∑

i=0

∑

j∈Li(v)

Pv
(
VHs,i(j)

)
ωH
(
VHs,i(j)

)

=
∑

j∈L0(v)

k−1∑

i=0

Pv
(
VHs,i(j)

)
ωH
(
VHs,i(j)

)

=
∑

j∈L0(v)

Pv
(
VHs,0(j)

) k−1∑

i=0

ωH
(
VHs,i(j)

)

≤
∑

j∈L0(v)

Pv
(
VHs,0(j)

)

= 1

k
.

Note the inequality holds because following Theorem 1, for
jth position in all the k subgraphs, there are at most 1 node
with nonzero weight, i.e.,

∑k−1
i=0 ωH(VHs,i(j)) ≤ 1.

Therefore, v is a k-secure cell. Because the property holds
for all the nodes with nonzero weights, 〈G, H〉 must be
k-secure. Hence proved.
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