
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 3, MARCH 2015 433

Layout Decomposition for Triple
Patterning Lithography

Bei Yu, Member, IEEE, Kun Yuan, Duo Ding, and David Z. Pan, Fellow, IEEE

Abstract—As minimum feature size and pitch spacing further
scale down, triple patterning lithography is a likely 193 nm exten-
sion along the paradigm of double patterning lithography for
14-nm technology node. Layout decomposition, which divides
input layout into several masks to minimize the conflict and
stitch numbers, is a crucial design step for double/triple pattern-
ing lithography. In this paper, we present a systematic study on
triple patterning layout decomposition problem, which is shown
to be NP-hard. Because of the NP-hardness, the runtime required
to exactly solve it increases dramatically with the problem size.
We first propose a set of graph division techniques to reduce the
problem size. Then, we develop integer linear programming (ILP)
to solve it. For large layouts, even with the graph-division tech-
niques, ILP may still suffer from serious runtime overhead.
To achieve better trade-off between runtime and performance,
we present a novel semidefinite programming (SDP)-based algo-
rithm. Followed by a mapping process, we can translate the SDP
solutions into the final decomposition solutions. Experimental
results show that the graph division can reduce runtime dramat-
ically. In addition, SDP-based algorithm can achieve great speed-
up even compared with accelerated ILP, with very comparable
results in terms of the stitch number and the conflict number.

Index Terms—Graph division, integer linear program-
ming (ILP), layout decomposition, semidefinite program-
ming (SDP), triple patterning lithography (TPL).

I. INTRODUCTION

AS THE feature size of semiconductor process technol-
ogy nodes further scales-down, the industry is greatly

challenged in printing sub-22 nm half-pitch patterns under the
193 nm lithographic wavelength. Double patterning lithog-
raphy has been widely used by industry for 22 nm volume
chip production [1]. For the 14-nm technology node develop-
ment, there are several lithography candidates. Some candi-
dates, such as electric beam lithography (EBL) and extreme
ultraviolet (EUV), suffer from the delay due to some tech-
nical problems: EBL has a serious limitation due to low
throughput, while EUV is challenged by tremendous technical

Manuscript received January 14, 2014; revised May 22, 2014, July 25,
2014, and October 8, 2014; accepted December 17, 2014. Date of publication
January 6, 2015; date of current version February 17, 2015. This work was
supported in part by the NSF under Grant CCF-0644316 and Grant CCF-
1218906, in part by SRC Task 2414.001, in part by the NSFC under Grant
61128010, and in part by IBM Scholarship. This paper was recommended by
Associate Editor Prof. P. Gupta.

B. Yu and D. Z. Pan are with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin, TX 78731 USA.

K. Yuan is with Facebook Inc., San Jose, CA 94025 USA.
D. Ding is with Oracle Corporation, Austin, TX 78727 USA.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCAD.2014.2387840

barriers such as lack of power sources, resists, and defect-free
masks [2], [3]. Triple patterning lithography, which is a nat-
ural extension from double patterning lithography, is one of
most viable solutions for 14 nm node [4]. In addition, indus-
try has already explored the test-chip patterns with triple
patterning or even quadruple patterning [5].

In triple patterning lithography manufacturing process, there
are three exposure/etching steps, through which the layout
can be produced. The advantage of this process is that the
effective pitch can be improved, which enhances the lithography
resolution. Like in double patterning, the key challenge of triple
patterning lithography is the layout decomposition, where input
layout is divided into three masks. When the distance between
two input features is less than minimum coloring distance
mins, they need to be assigned to different masks to avoid
a coloring conflict. Sometimes coloring conflict can be also
resolved by inserting stitch to split a pattern into two touching
parts. However, this introduces stitches, which lead to yield
loss because of overlay error. Therefore, two of the main
objectives in layout decomposition are conflict minimization
and stitch minimization. An example of triple patterning layout
decomposition (TPLD) is shown in Fig. 1, where all features
in input layout are divided into three masks (colors).

In double patterning lithography, layout decomposition
is generally regarded as a two-coloring problem [6]–[11].
A complete flow was proposed in [6] to optimize splitting loca-
tions with integer linear programming (ILP). Xu and Chu [8]
provided an efficient graph reduction-based algorithm for
stitch minimization. Yang et al. [9] and Tang and Cho [11]
proposed min-cut-based approaches to reduce stitch number.
To enable simultaneous conflict and stitch minimization, ILP
was adopted by [6] and [7] with different feature preslicing
techniques. A matching-based decomposer was proposed to
minimize both the conflict number and the stitch number [10].

There are investigations on triple patterning aware
design [12]–[14] and triple patterning layout decomposi-
tion [15]–[25]. Cork et al. [15] proposed a three-coloring
algorithm adopting SAT formulation. Ghaida et al. [17] reused
the double patterning techniques. For row-based layout design,
Tian et al. [19], [21] presented polynomial time decomposition
algorithms.

In this paper, we propose a systematic study on TPLD
problem to simultaneously minimize conflict and stitch. Our
contributions are highlighted as follows.

1) We prove that TPLD problem is NP-hard, therefore, to
reduce the problem size, we propose a set of graph-
division techniques.

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 3, MARCH 2015

(a) (b) (c)

Fig. 1. Example of TPLD. (a) Input layout. (b) Features with different colors
mean that they are assigned into different masks. (c) Features on each mask.

(a) (b) (c)

Fig. 2. Layout graph construction and DG construction. (a) Layout graph
for given input, where all edges are conflict edges. (b) Vertex projection.
(c) Corresponding DG, where dash edges are stitch edges.

2) We present an ILP formulation, which can achieve opti-
mal solution theoretically, to assign color for each input
feature.

3) To overcome the runtime overhead, we propose a novel
vector programming, which can be relaxed to an effec-
tive semidefinite programming (SDP) formulation. We
develop a mapping process to transform the SDP solu-
tion to the final TPLD results.

4) A post-stage conflict removal is proposed to further
improve layout decomposition results.

The rest of this paper is organized as follows. Section II
introduces the problem formulation, and the overall decom-
position flow. Section III discusses how to generate stitch
candidates for triple patterning. Section IV provides the gen-
eral mathematical formulation and the ILP formulation, while
Section V proposes a novel SDP-based algorithm to accelerate
the basic algorithm. Section VI introduces some graph-division
techniques to further reduce the problem size. Section VII
presents the details of post conflict removal. Section VIII
presents the experiment results, followed by the conclusion
in Section IX.

II. PRELIMINARIES

In this section, we provide some preliminaries on TPLD,
including problem formulation, complexity analysis, and the
introduction to our decomposition flow.

A. Problem Formulation

Given an input layout which is specified by features in
polygonal shapes, at first a layout graph (LG) [6] is constructed
by Definition 1.

Definition 1 (LG): A LG is an undirected graph whose ver-
tex set represents polygonal shapes and edge set represents the
connection if and only if two corresponding polygonal shapes
are within minimum coloring distance mins.

Given an input layout, the corresponding LG is illustrated
in Fig. 2(a). All the edges in a LG are called conflict edges.
A conflict exists if and only if two vertices are connected by
a conflict edge and are in the same mask. In other words,
each conflict edge is a conflict candidate. On the LG, ver-
tex projection [6] is performed, where projected segments are
highlighted by bold lines in Fig. 2(b). Based on the projection
result, all the legal splitting locations are computed. Then, a
decomposition graph (DG) [26] is constructed by Definition 2.

Definition 2 (DG): A DG is an undirected graph with a sin-
gle set of vertices V , and two sets of edges, conflict edges (CE)
and stitch edges (SE), respectively. V has one or more vertices
for each polygonal shape and each vertex is associated with a
polygonal shape. An edge is in CE iff the two corresponding
vertices are within minimum coloring distance mins. An edge
is in SE iff there is a stitch between the two vertices which
are associated with the same polygonal shape.

An example of DG is shown in Fig. 2(c). Note that the
conflict edges are marked as black edges, while stitch edges
are marked as dash edges. Here, each stitch edge is a stitch
candidate. We define the TPLD problem as follows.

Problem 1 (Triple Patterning Layout Decomposition):
Given a layout which is specified by features in polygonal
shapes, the DG is constructed. TPLD assigns all the vertices
of DG into one of three colors (masks) to minimize the costs
of the stitches and the conflicts.

In this paper, we set the cost for each conflict is 1, and the
cost for each stitch is α.

B. Problem Complexity

TPLD problem is an extension of double patterning layout
decomposition (DPLD) problem, and both of them simulta-
neously minimize the conflict number and the stitch number.
Xu and Chu [10] showed that if the DG is planar, DPLD
can be resolved in polynomial time. At first glance, com-
pared with DPLD, TPLD seems easier as there is one more
color (mask). However, it turns out to harder. On one hand,
since the goal of triple patterning is to achieve finer pitches,
there will actually be more features to be packed closer to each
other which will form multiway conflicts. That is, DGs for
triple patterning will become much denser than those in double
patterning. On the other hand, in double patterning the conflict
detection (two-colorable) is equivalent to odd-cycles checking,
which can be resolved in linear time through a breadth-first
search. However, in triple patterning the conflict minimization,
or even the conflict detection, is not straightforward.

To demonstrate the hardness of TPLD problem, we first
introduce the planer graph 3-coloring (PG3C) problem. Given
a planer graph, the PG3C problem is to assign three colors
to all vertices. A conflict exists if and only if two vertices
connected by an edge are in the color. The target of PG3C
problem is to minimize the coloring conflict number. We have
the following lemma.

Lemma 1: The PG3C problem is NP-hard.
The correctness of Lemma 1 stems from the conclu-

sion that deciding whether a planar graph is 3-colorable is
NP-complete [27]. For a planar graph, checking whether it is

YU et al.: LAYOUT DECOMPOSITION FOR TRIPLE PATTERNING LITHOGRAPHY 435

(a) (b) (c)

Fig. 3. Reducing PG3C to TPLD. (a) Instance of PG3C. (b) Transferred
orthogonal drawing. (c) Corresponding TPLD instance.

three-colorable cannot be finished in polynomial time; there-
fore, three-coloring a planar graph with minimum cost cannot
be finished in polynomial time.

Theorem 1: TPLD problem is NP-hard.
Proof: We prove this theorem by showing PG3C ≤P TPLD,

i.e., PG3C can be reduced to TPLD. Given an instance of
PG3C, its planar graph G = (V, E) can be transferred to an
orthogonal drawing [28], where the drawing plane is subdi-
vided by horizontal and vertical gridlines of unit spacing λ.
The vertices ∈ V are represented by boxes occupying grid
point with width λ/4. The edges ∈ E are mapped to nonover-
lapping paths in the gridlines. If each vertex is associated with
a grid, the degree of each vertex should be at most four. For
the vertices with degree more than four, they can be drawn
as boxes occupying more than one grid point [29]. We con-
struct the corresponding TPLD instance through the following
two steps.

1) The width of each path is extended to λ/4.
2) Break each path in the middle through gap with

length λ/8.
If we set mins to λ/8, then we can get a TPLD instance,

whose DG is isomorphic to the planar graph of PG3C instance.
Since an orthogonal drawing can be constructed in polynomial
time [28], the whole reduction can be finished in polyno-
mial time. Thus, minimizing conflict number in the original
PG3C instance is equal to minimizing conflict number in the
constructed TPLD instance, which completes the proof.

For example, given a PG3C instance in Fig. 3(a), the
corresponding orthogonal drawing and TPLD instance are
illustrated in Fig. 3(b) and (c), respectively. Here, no stitch
candidate is introduced.

C. Overall Decomposition Flow

The overall decomposition flow is illustrated in Fig. 4. First,
we construct LG to translate the original layout into graph
representations. Two graph division techniques are developed
to the LG: independent component computation (ICC) and
iterative vertex removal (IVR). Second, after vertex projec-
tion, we transform the LG into DG and propose two other
graph division methods: bridge edge detection/removal and
bridge vertex detection/duplication. Third, after these graph-
based techniques, the DG is divided into a set of components.

Fig. 4. Overview of our decomposition flow.

(b)(a)

Fig. 5. Examples of (a) redundant stitch and (b) lost stitch.

To solve the color assignment on each DG component, two
approaches are proposed. One is based on ILP, which can
resolve the problem exactly, but it may suffer from runtime
overhead. Another one is SDP-based algorithm: instead of
using ILP, we formulate the problem into a vector program-
ming, then its relaxed version can be resolved through SDP.
Followed by a mapping stage, the SDP solution can be trans-
lated into a color assignment solution. At last, we merge all
DG components together to achieve the final TPLD result.

III. STITCH CANDIDATE GENERATION

Stitch candidate generation is one of the most important
steps to parse a layout, as it not only determines the ver-
tex number in the DG, but also affects the decomposition
result. We use DP candidates to represent the stitch candi-
dates generated by all previous double patterning research.
Kahng et al. [6] and Xu and Chu [8] proposed different
methodologies to generate the DP candidates. DP candidates
may lose some legal candidates, thus they cannot be directly
applied in TPLD problem [17], [18], [20]. Besides, we will
show that DP candidates may be redundant. In this section, we
provide a procedure to generate appropriate stitch candidates
for triple patterning lithography.

A. Limitations of DP Candidates

We provide two examples to demonstrate that DP candidates
are not appropriate for triple patterning. First, because of an
extra color choice, some DP candidates may be redundant.
As shown in Fig. 5(a), the stitch can be removed because no
matter what color is assigned to features b and c, the feature
a can always be assigned a legal color. We denote this kind

436 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 3, MARCH 2015

Fig. 6. Projection sequence of the feature is 01212101010, and the last 0 is
a default terminal zero.

of stitch as a redundant stitch. After removing these redun-
dant stitches, some extra vertices in the DG can be merged. In
this way, we can reduce the problem size. Besides, DP candi-
dates may cause the stitch loss problem, i.e., some useful stitch
candidates cannot be detected and inserted in layout decom-
position. In DPL, the stitch candidate has one precondition: it
cannot intersect with any projection. For example, as shown
in Fig. 5(b), because this stitch intersects with the projection
of feature b, it cannot belong to the DP candidates. However,
if features b, c, and d are assigned with three different colors,
only introducing this stitch can resolve the conflict. In other
words, the precondition in DPL limits the ability of stitches to
resolve the triple patterning conflicts and may result in unno-
ticed conflicts. We denote the useful stitches forbidden by the
DPL precondition as a lost stitch.

B. Stitch Candidate Generation for TPL

Given the projection results, we propose a new stitch can-
didate generation. Compared with the DP candidates, our
methodology can remove some redundant stitches and system-
atically solve the stitch loss problem. For a better explanation,
we define the projection sequence as follows.

Definition 3 (Projection Sequence): After the projection,
the feature is divided into several segments each of which
is labeled with a number representing how many other fea-
tures are projected onto it. The sequence of numbers on these
segments is the projection sequence.

Instead of analyzing each feature and all its neighboring
features, we can directly carry out stitch candidate generation
based on the projection sequence. For convenience, we pro-
vide a terminal zero rule, i.e., the beginning and the end of the
projection sequence must be 0. To maintain this rule, some-
times a default 0 needs to be added. An example of projection
sequence is shown in Fig. 6, where the middle feature has
five conflict features, b, c, d, e, and f . Based on the projec-
tion results, the feature is divided into ten segments. Through
labeling each segment, we can get its projection sequence:
01212101010. Here, a default 0 is added at the end of the
feature.

Based on the definition of projection sequence, we summa-
rize the rules for redundant stitches and lost stitches. First,
motivated by the case in Fig. 5(a), if the projection sequence
begins with “01010,” then the first stitch in DP candidates is
redundant. Since the projection of a feature can be symmet-
ric, if the projection sequence ends with “01010,” then the
last stitch candidate is also redundant. Besides, the rule for
lost stitches is as follows, if a projection sequence contains
the sub-sequence “xyz,” where x, y, z > 0 and x > y, z > y,
then there is one lost stitch at the segment labeled as y. For

Algorithm 1 Stitch Candidate Generation for TPL
Require: Projection results on features.

1: Decompose multiple-pin features;
2: for each feature wi do
3: Calculate the projection sequence psi;
4: if psi begins or ends with “01010” then
5: Remove redundant stitch(es);
6: end if
7: for each sequence bunch of psi do
8: Search and insert at most one stitch candidate;
9: end for

10: end for

Fig. 7. Stitch candidates generated for DPL and TPL.

example, the stitch candidate in Fig. 5(b) is contained in the
sub-sequence “212,” so it is a lost stitch.

The details of stitch candidate generation for TPL are shown
in Algorithm 1. If necessary, at first each multiple-pin feature
is decomposed into several two-pin features. Then for each
feature, we can calculate its projection sequence. We remove
the redundant stitches by checking if the projection sequence
begins or ends with “01010.” Next, we search for and insert
stitches, including the lost stitches. Here, we define a sequence
bunch. A sequence bunch is a sub-sequence of a projection
sequence, and contains at least three nonzero segments.

An example of the stitch candidate generation is shown
in Fig. 7. In the DP candidate generation, there are two
stitch candidates generated (stitches 2 and 3). Through our
stitch candidate generation, stitch 3 is labeled as a redun-
dant stitch. Besides, stitch 1 is identified as a lost stitch
candidate because it is located in a sub-sequence “212.”
Therefore, stitches 1 and 2 are chosen as stitch candidates
for TPL. It shall be noted that sub-sequence “101” is not nec-
essarily a redundant stitch. That is, “101” is a redundant stitch
only when it is inside “01010.” For example, as illustrated in
Fig. 7, one stitch candidate would be introduced inside sub-
sequence “21010.” In other words, sub-sequence “101” inside
“21010” is not a redundant stitch location.

IV. ILP-BASED COLOR ASSIGNMENT

On DG, we carry out color assignment, which is a critical
step in the layout decomposition flow. In color assignment,
each vertex is assigned one of three colors (masks). In this
section, first, we will give a general mathematical formulation
for the color assignment. Then, we will show that it can solved
through an ILP, which is commonly used before for DPLD
problem [6], [7].

A. Mathematical Formulation

For convenience, some notations used in this section are
listed in Table I. The general mathematical formulation for the

YU et al.: LAYOUT DECOMPOSITION FOR TRIPLE PATTERNING LITHOGRAPHY 437

TABLE I
NOTATIONS

TPLD problem is shown in (1), where the objective is to simul-
taneously minimize the cost of both the conflict number and
the stitch number. α is a user-defined parameter for assigning
relative importance between the conflict and the stitch

min
∑

eij∈CE

cij + α
∑

eij∈SE

sij (1)

s.t. cij ← (xi = xj) ∀eij ∈ CE (1a)

sij ← xi ⊕ xj ∀eij ∈ SE (1b)

xi ∈ {0, 1, 2} ∀i ∈ V. (1c)

In (1), xi is a variable for the three colors of rectangles ri,
cij is a binary variable for conflict edge eij ∈ CE, and sij is
a binary variable for stitch edge eij ∈ SE. Constraint (1a) is
used to evaluate the conflict number when touch vertices ri

and rj are assigned the same color (mask). Constraint (1b) is
used to calculate the stitch number. If vertices ri and rj are
assigned different colors (masks), stitch sij is introduced.

B. ILP Formulation

We will now show how to implement (1) with ILP. Note
that (1a) and (1b) can be linearized only when xi is a 0–1
variable [6], which is hard to represent three different colors.
To handle this problem, we represent the color of each ver-
tex using two 1-bit 0–1 variables xi1 and xi2. In order to
limit the number of colors for each vertex to 3, for each pair
(xi1, xi2) the value (1, 1) is not permitted. In other words, only
values (0, 0), (0, 1), and (1, 0) are allowed. Thus, (1) can be
formulated

min
∑

eij∈CE

cij + α
∑

eij∈SE

sij (2)

s.t. xi1 + xi2 ≤ 1 (2a)

xi1 + xj1 ≤ 1+ cij1 ∀eij ∈ CE (2b)

(1− xi1)+ (1− xj1) ≤ 1+ cij1 ∀eij ∈ CE (2c)

xi2 + xj2 ≤ 1+ cij2 ∀eij ∈ CE (2d)

(1− xi2)+ (1− xj2) ≤ 1+ cij2 ∀eij ∈ CE (2e)

cij1 + cij2 ≤ 1+ cij ∀eij ∈ CE (2f)

xi1 − xj1 ≤ sij1 ∀eij ∈ SE (2g)

xj1 − xi1 ≤ sij1 ∀eij ∈ SE (2h)

xi2 − xj2 ≤ sij2 ∀eij ∈ SE (2i)

xj2 − xi2 ≤ sij2 ∀eij ∈ SE (2j)

sij ≥ sij1, sij ≥ sij2 ∀eij ∈ SE (2k)

xij is binary. (2l)

The objective function is the same as that in (1), which min-
imizes the weighted summation of the conflict number and the
stitch number. Constraint (2a) is used to limit the number of
colors for each vertex to 3. In other words, only three bit-pairs
(0, 0), (0, 1), (1, 0) are legal. Constraints (2b)–(2f) are equiv-
alent to (1a), where 0–1 variable cij1 demonstrates whether xi1
equals to xj1, and cij2 demonstrates whether xi2 equals to xj2.
0–1 variable cij is true only if two vertices connected by con-
flict edge eij are in the same color, e.g., both cij1 and cij2 are
true. Constraints (2g)–(2k) are equivalent to (1b). 0–1 vari-
able sij1 demonstrates whether xi1 is different from xj1, and
sij2 demonstrates whether xi2 is different from xj2. Stitch sij is
true if either sij1 or sij2 is true.

V. SDP-BASED COLOR ASSIGNMENT

Although ILP formulation (2) can optimally solve the color
assignment problem theoretically, for practical design it may
suffer from runtime overhead problem. In this section, we
show that instead of expensive ILP, the color assignment can
be also formulated as a vector programming, with three unit
vectors to represent three different colors. Then, the vector
programming is relaxed and solved through SDP. SDP is a
subfield of convex optimization, where one minimizes a lin-
ear function subject to the constraint that an affine combination
of symmetric matrices is positive semidefinite [30]. Although
SDP is more general than linear programming, both of them
can be solved in polynomial time. Besides, efficient solvers
for SDP have been developed in recent years [31]. Given the
solutions of SDP, we develop a mapping process to obtain the
final color assignment solutions. Note that our algorithm is
fast that both SDP formulation and mapping process can be
finished in polynomial time.

A. Vector Programming

In color assignment, there are three possible colors. We set
a unit vector 	vi for every vertex i. If eij is a conflict edge,
we want vertices 	vi and 	vj to be far apart. If eij is a stitch
edge, we hope vertices 	vi and 	vj to be the same. As shown in
Fig. 8, we associate all the vertices with three different unit
vectors: (1, 0), (−1/2,

√
3/2), and (−1/2,−√3/2). Note that

the angle between any two vectors of the same color is 0,
while the angle between vectors with different colors is 2π/3.

Additionally, we define the inner product of two
m-dimension vectors 	vi and 	vj as follows:

	vi · 	vj =
m∑

k=1

vikvjk

where each vector 	vi can be represented as (vi1, vi2, . . . , vim).
Then, for the vectors 	vi, 	vj ∈ {(1, 0), (−1/2,

√
3/2),

438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 3, MARCH 2015

Fig. 8. Three vectors (1, 0), (−1/2,
√

3/2), (−1/2,−√3/2) represent three
different colors.

(−1/2,−√3/2)}, we have the following property:

	vi · 	vj =
{

1, 	vi = 	vj

− 1
2 	vi �= 	vj.

Based on the above property, we can formulate the color
assignment as the following vector program [32]:

min
∑

eij∈CE

2

3

(
	vi · 	vj + 1

2

)
+ 2α

3

∑

eij∈SE

(
1− 	vi · 	vj

)
(3)

s.t. 	vi ∈
{

(1, 0),

(
−1

2
,

√
3

2

)
,

(
−1

2
,−
√

3

2

)}
. (3a)

Formula (3) is equivalent to mathematical formula (1): the
left part is the cost of all conflicts, and the right part gives
the total cost of the stitches. Since the TPLD problem is
NP-hard, this vector programming is also NP-hard. In the
next part, we will relax (3) to a SDP, which can be solved
in polynomial time.

B. SDP Relaxation

Constraint (3a) requires solutions of (3) be discrete. After
removing this constraint, we generate formula (4) as follows:

min
∑

eij∈CE

2

3

(
	yi · 	yj + 1

2

)
+ 2α

3

∑

eij∈SE

(1− 	yi · 	yj) (4)

s.t. 	yi · 	yi = 1, ∀i ∈ V (4a)

	yi · 	yj ≥ −1

2
, ∀eij ∈ CE. (4b)

This formula is a relaxation of (3) since we can take any
feasible solution 	vi = (vi1, vi2) to produce a feasible solution
of (4) by setting 	yi = (vi1, vi2, 0, 0, . . . , 0), i.e., 	yi · 	yj = 1 and
	yi· 	yj = 	vi· 	vj in this solution. Here, the dimension of vector 	yi is
|V|, that is, the vertex number in current DG component. If ZR

is the value of an optimal solution of formula (4) and OPT is
an optimal value of formula (3), it must satisfy: ZR ≤ OPT. In
other words, solution of (4) provides a lower bound solution to
that in (3). After removing the constant in objective function,
we redraw the following vector programming:

min
∑

eij∈CE

(yi · 	yj
)− α

∑

eij∈SE

(yi · 	yj
)

(5)

s.t. (4a)–(4b).

Without discrete constraint (3a), programs (4) and (5) are
not NP-hard now. To solve (5) in polynomial time, we will
show that it is equivalent to a SDP.

Consider the following standard SDP:

SDP: min A • X (6)

xii = 1, ∀i ∈ V (6a)

xij ≥ −1

2
, ∀eij ∈ CE (6b)

X � 0 (6c)

where A • X is the inner product between two matrices A and
X, i.e.,

∑
i
∑

j aijxij. Here, aij is the entry that lies in the ith
row and the jth column of matrix A

aij =
⎧
⎨

⎩

1, ∀eij ∈ CE
−α, ∀eij ∈ SE
0, otherwise.

(7)

Constraint (6c) means matrix X should be positive semidef-
inite. Similarly, xij is the ith row and the jth column entry
of X. Note that the solution of SDP is represented as a pos-
itive semidefinite matrix X, while solutions of relaxed vector
programming are stored in a list of vectors. However, we can
show that they are equivalent.

Lemma 2: A symmetric matrix X is positive semidefinite if
and only if X = VVT for some matrix V .

Given a positive semidefinite matrix X, using the Cholesky
decomposition we can find corresponding matrix V in O(n3)

time.
Theorem 2: The semidefinite program (6) and the vector

program (5) are equivalent.
Proof: Given solutions { 	y1, 	y2, . . . , 	ym} of (5), the corre-

sponding matrix X is defined as xij = 	yi · 	yj. In the other
direction, based on Lemma 2, given a matrix X from (6), we
can find a matrix V satisfying X = VVT by using the Cholesky
decomposition. The rows of V are vectors {vi} that form the
solutions of (5).

After solving the SDP formulation (6), we get a set of con-
tinuous solutions in matrix X. Since each value xij in matrix X
corresponds to 	yi · 	yj, and 	yi · 	yj is an approximative solution of
	vi · 	vj in (3), we can draw the conclusion that xij is an approx-
imation to 	vi · 	vj. Instead of trying to calculate all 	vi through
Cholesky decomposition, we pay attention to xij value itself.
Essentially, if xij is close to 1, then vertices i and j tend to be
in the same color; if xij is close to −0.5, vertices i and j tend
to be in different colors.

For most of cases, SDP can provide reasonable solutions
that each xij is either close to 1 or close to −0.5. A DG exam-
ple is illustrated in Fig. 9. It contains seven conflict edges and
one stitch edge. Moreover, the graph is not two-colorable since
it contains several odd cycles. To solve the corresponding color
assignment through SDP formulation, we construct matrix A
as (7) as follows:

A =

⎛

⎜⎜⎜⎜⎝

0 1 1 −0.1 1
1 0 1 0 1
1 1 0 1 0
−0.1 0 1 0 1

1 1 0 1 0

⎞

⎟⎟⎟⎟⎠
.

YU et al.: LAYOUT DECOMPOSITION FOR TRIPLE PATTERNING LITHOGRAPHY 439

Fig. 9. Simple example of SDP. (a) Input DG component. (b) Color
assignment result with 0 conflict and 0 stitch.

Fig. 10. Complex example. (a) Input DG component. (b) Color assignment
result with one conflict.

Note that, here, we set α to 0.1. After solving the SDP (6),
we can get a matrix X as follows:

X =

⎛

⎜⎜⎜⎜⎝

1.0 −0.5 −0.5 1.0 −0.5
1.0 −0.5 −0.5 −0.5

1.0 −0.5 1.0
. . . 1.0 −0.5

1.0

⎞

⎟⎟⎟⎟⎠
.

Here, we only list the upper part of the matrix X. Because
X14 is 1.0, vertices 1 and 4 should be in the same color.
Similarly, vertices 3 and 5 should also be in the same color.
In addition, because of all other −0.5 values, we know that
no more vertices can be in same color. Thus, the final color
assignment result for this example is shown in Fig. 9(b).

C. Mapping: SDP to Color Assignment

It shall be noted that the SDP formulation is a relaxation
to the initial color assignment problem or vector program-
ming (3). The matrix X generated from Fig. 9 is an ideal
case. That is, all values are either 1 or −0.5. Therefore, from
X we can derive the final color assignment easily. Our pre-
liminary results show that with reasonable threshold such as
0.9 < xij ≤ 1 for same mask, and −0.5 ≤ xij < −0.4 for
different mask, more than 80% of vertices can be decided
by the global SDP optimization. However, for practical lay-
out, especially those essentially contain conflicts and stitches,
some values in the matrix X are not so clear. We use Fig. 10
for illustration. The DG in Fig. 10(a) contains a four-clique
structure {1, 3, 4, 5}, therefore at least one conflict would be
reported. Through solving the SDP formulation (6), we can
achieve matrix X as

X =

⎛

⎜⎜⎜⎜⎝

1.0 −0.5 −0.13 −0.5 −0.13
1.0 −0.5 1.0 −0.5

1.0 −0.5 −0.13
. . . 1.0 −0.5

1.0

⎞

⎟⎟⎟⎟⎠
. (8)

From X, we can see that x24 = 1.0, therefore, ver-
tices 2 and 4 should be in the same color. x13, x15, and x35 are

Algorithm 2 Partition-Based Mapping
Require: Solution matrix X of the program (6).

1: Label each nonzero entry Xi,j as a triplet (Xij, i, j);
2: Sort all (Xij, i, j) by Xij;
3: for all triples with Xij > thunn do
4: Union(i, j);
5: end for
6: for all triples with Xij < thsp do
7: Separate(i, j);
8: end for
9: Construct graph GM;

10: if graph size ≤ 3 then
11: return;
12: else if graph size ≤ 7 then
13: Backtracking-based three-way partitioning;
14: else
15: FM-based three-way partitioning;
16: end if

not so clear (−0.13). For those vague values, we propose a
mapping process to find the final color assignment solutions.
In the following, we will explain the mapping algorithm. All
xij values in matrix X are divided into two types: 1) clear and
2) vague. If xij is close to 1 or −0.5, it is denoted as a clear
value; otherwise it is a vague value. The mapping uses all the
xij values as the guideline to generate the final decomposition
results, even when some xijs are vague.

Here, we propose a partition-based mapping, which can
solve the assignment problem for the vague Xijs in a more
effective way. The main ideas are as follows. If a Xij is vague,
instead of only relying on the SDP solution, we also take
advantage of the information in DG. The information is cap-
tured through constructing a graph, denoted by GM . Through
formulating the mapping as a three-way partitioning on the
graph GM , our mapping can provide a global view to search
better solutions.

Algorithm 2 shows our partition-based mapping proce-
dure. Given the solutions from program (6), some triplets
are constructed and sorted to maintain all nonzero Xij val-
ues (lines 1 and 2). The mapping incorporates two stages to
deal with the two different types. The first stage (lines 3–8)
is similar to that in [16]. If Xij is clear then the relationship
between vertices ri and rj can be directly determined. Here,
thunn and thsp are user-defined threshold values. For example,
if Xij > thunn, which means that ri and rj should be in the same
color, then function Union (i, j) is applied to merge them into a
large vertex. Similarly, if Xij < thsp, then function Separate (i, j)
is used to label ri and rj as incompatible. In the second
stage (lines 9–16), we deal with the vague Xij values. During
the previous stage, some vertices have been merged, there-
fore the total vertex number is not large. Here, we construct a
graph GM to represent the relationships among all the remanent
vertices (line 9). Each edge eij in this graph has a weight repre-
senting the cost if vertices i and j are assigned into same color.
Therefore, the color assignment problem can be formulated as
a maximum-cut partitioning problem on GM (lines 10–16).

440 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 3, MARCH 2015

It is well known that the maximum-cut problem, even for
a two-way partition, is NP-hard. However, we observe that in
many cases, after the global SDP optimization, the graph size
of GM could be quite small, i.e., less than 7. For these small
cases, we develop a backtracking-based method to search the
entire solution space. Note that, here backtracking can quickly
find the optimal solution even through three-way partition-
ing is NP-hard. If the graph size is larger, we propose a
heuristic method, motivated by the classic FM partitioning
algorithm [33], [34]. Different from the classic FM algorithm,
we make the following modifications.

1) In the first stage of mapping, some vertices are labeled
as incomparable, therefore before moving a vertex from
one partition to another, we should check whether it is
legal.

2) Classical FM algorithm is for min-cut problem, we need
to modify the gain function of each move to achieve a
maximum cut.

We use the disjoint-set data structure to group vertices into
three colors. Implemented with union by rank and path com-
pression, the running time per operation of disjoint-set is
almost constant [35]. Let n be the number of vertices, then
the number of triplets is O(n2). Sorting all the triplets requires
O(n2logn). Since all triplets are sorted, each of them can be
visited at most once. Besides, the runtime complexity of graph
construction is O(m), where m is the vertex number in GM .
The runtime of three-way maximum-cut partitioning algorithm
is O(mlogm). Since m is much smaller than n, the complexity
of partition balanced mapping is O(n2logn).

VI. GRAPH DIVISION

To further achieve some speedup, instead of solving color
assignment in one DG, we propose several techniques to divide
the graph into a bunch of components. Then, each component
can be solved color assignment independently.

A. LG Division

Given input layout, LG is constructed first. We propose
two methods to divide/simplify the LG in order to reduce the
problem size.

1) ICC: The first division technique is called ICC. In a LG
of real design, we observe many isolated clusters. By breaking
down the whole LG into several independent components, we
partition the initial LG into several small ones. After solving
the TPLD problem for each isolated component, the overall
solution can be taken as the union of all the components with-
out affecting the global optimality. It shall be noted that ICC
is a well-known technique which has been applied in many
previous studies.

2) IVR: We can further simplify the LG by iteratively
removing all vertices with degree less than or equal to two.
This technique is called IVR, as described in Algorithm 3. At
the beginning, all vertices with degree no more than two are
detected and removed temporarily from the LG. After each
vertex removal, we need to update the degrees of other ver-
tices. This removing process will continue until all the vertices

Algorithm 3 IVR and Color Assignment
Require: LG G, stack S.

1: while ∃n ∈ G s.t. degree(n) ≤ 2 do
2: S.push(n);
3: G.delete(n);
4: end while
5: Construct DG for the remanent vertices;
6: for each component in DG do
7: Apply color assignment;
8: end for
9: while !S.empty() do

10: n = S.pop();
11: G.add(n);
12: Assign n a legal color;
13: end while

are at least degree-three. All the vertices that are temporar-
ily removed are stored in stack S. Then, DG are constructed
for the remanent vertices. After solving the color assignment
on each DG component, the removed vertices are recovered
one-by-one.

If all the vertices in one LG can be temporarily
removed (pushed onto the stack S), TPLD problem is solved
optimally in linear time. An example is illustrated in Fig. 11,
where all the vertices can finally be pushed onto stack. Even
there are still some vertices remained, our IVR technique can
minimize problem size dramatically. Additionally, we observe
that this technique can further partition the LG into several
independent components.

B. DG Division

On the LG simplified by ICC and IVR, projection is carried
out to calculate all the potential stitch positions. Then, we
construct the DG, which includes the conflict edges and the
stitch edges. Here, the stitch edges are based on the projection
result. Note that ICC can be still applied here to partition a
DG into several smaller ones. We further propose three new
techniques to reduce the size of each DG.

1) Bridge Edge Detection and Removal: A bridge edge of
a graph is an edge whose removal disconnects the graph into
two components. Removing the bridge edge can divide the
whole problem into two independent sub-problems.

An example of the bridge edge detection is shown in Fig. 12.
Conflict edge eab is identified as a bridge edge. Removing
the bridge edge divides the DG into two sides. After layout
decomposition for each component, if vertices a and b are
assigned the same color, without loss of generality, we can
rotate colors of all vertices in the lower side. Similar method
can be adopted when bridge is a stitch edge. We adopt an
O(|V| + |E|) algorithm [36] to detect all bridge edges in DG.

2) Bridge Vertex Detection and Duplication: This tech-
nique is also defined as “two-connected component compu-
tation” in [18]. A bridge vertex of a graph is a vertex whose
removal disconnects the graph into two or more components.
Similar to bridge edge detection, we can further simplify the
DG by removing all the bridge vertices. An example of bridge

YU et al.: LAYOUT DECOMPOSITION FOR TRIPLE PATTERNING LITHOGRAPHY 441

Fig. 11. Example of IVR, where the TPLD problem can be solved in linear time. (a) LG. (b)–(e) Iteratively remove and push in vertices with degree less than
three. (f)–(i) After color assignment for the remanent vertices, iteratively pop-up and recover vertices, and assign any legal color. (j) TPLD can be finished
after the iterative vertex recover.

Fig. 12. Bridge edge detection and removal. (a) Initial DG. (b) After bridge
edge detection, remove edge eab. (c) In two components, we carry out layout
decomposition. (d) Rotate colors in the lower component to add bridge.

Fig. 13. Bridge vertex detection and duplication. (a) Initial DG. (b) After
bridge vertex detection, duplicate vertex a. (c) Rotate the colors in lower
sub-graph to merge vertices a1 and a2.

vertex computation is illustrated in Fig. 13. This simplification
method is effective because for standard cell layouts, usually
we can choose the power and ground lines as the bridge ver-
tices. By this way, we can significantly partition the layouts by
rows. All bridge vertices can be detected using an O(|V|+|E|)
search algorithm.

3) Fast Color Assignment Trial: Although the SDP and
the partition-based mapping can provide high performance
for color assignment, it is still expensive to be applied to all
the DG components. We derive a fast color assignment trial
before calling SDP-based method. If no conflict or stitch is

Algorithm 4 Fast Color Assignment Trial
Require: DG G, stack S.

1: while ∃n ∈ G s.t. dconf(n) < 3 & dstit(n) < 2 do
2: S.push(n); G.delete(n);
3: end while
4: if G is not empty then
5: Recover all vertices in S; return FALSE;
6: else
7: while !S.empty() do
8: n = S.pop(); G.add(n);
9: Assign n a legal color;

10: end while
11: return TRUE;
12: end if

introduced, our trial solves the color assignment problem in
linear time. Note that SDP method is skipped only when DG
can be colored without stitch or conflict, our fast trial does
not lose any solution quality. Besides, our preliminary results
show that more than half of the DGs can be decomposed using
this fast method. Therefore, the runtime can be dramatically
reduced.

The details of fast color assignment trial is shown in
Algorithm 4. First, we iteratively remove the vertex with con-
flict degree (dconf) less than 3 and stitch degree (dstit) less
than 2 (lines 1–3). If some vertices cannot be removed, we
recover all the vertices in stack S, then return false; oth-
erwise, the vertices in S are iteratively popped (recovered)
(lines 7–11). For each vertex n popped, since it is connected
with at most one stitch edge, we can always assign one
color without introducing conflict. However, several additional
stitches may be introduced when some vertices are recovered
from stack.

VII. POST REFINEMENT

Although the graph-division techniques can dramatically
reduce the computational time to solve the TPLD problem,

442 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 3, MARCH 2015

Fig. 14. IVR may introduce additional conflicts. (a) LG after IVR. (b) Stitch
generation and color assignment on the graph. (c) After adding back the
simplified vertices, one additional conflict is introduced to vertex a.

Fig. 15. Example of post-refinement. (a) Extend LG to include a. (b) Stitch
generation and color assignment on the new graph. (c) No additional conflict
at final solution.

Kuang and Young [20] pointed out that for some cases
IVR may loss some optimality. One example is illustrated
in Fig. 14. The simplified LG [Fig. 14(b)] can be inserted
stitch candidates and assigned legal colors [see Fig. 14(b)].
However, when recover removed vertices, the vertex degree
of a is increased to 3, and there is no available color for it
[see Fig. 14(c)]. The reason for this conflict is that during
stitch candidate generation, vertex a is not considered.

We propose a post refinement to resolve the conflicts caused
by IVR. First, we check whether one conflict can be cleared
by splitting a, if yes, one or more stitches would be introduced
to a, then stop. Otherwise, we recalculate the color assignment
on this portion, as illustrated in Fig. 15. The initial LG would
be extended to include vertex a [Fig. 15(a)], thus the position
of vertex a would be considered during stitch candidate gen-
eration. As shown in Fig. 15(c), no additional conflict would
be introduced after recovering all vertices from stack.

During post-refinement, after solving the new DG, the sim-
plified vertices would be pushed back and assigned colors
one-by-one. If there is still conflicts caused by the simplified
vertices, we will check whether one conflict can be removed
through stitch insertion. If yes, then one more stitch would be
reported. Otherwise, if we cannot find stitch to split the vertex,
one conflict would be reported. Then, this vertex would not
be considered during the following color assignment. Although
resolving color assignment requires more computational time,
our initial results show that only small part of DG components
need to apply the post-stage.

VIII. EXPERIMENTAL RESULTS

We implement our algorithm in C++ and test it on an Intel
Core 2.9 GHz Linux machine. We choose GUROBI [37] as

Fig. 16. Part of S1488 decomposition result.

TABLE II
DP STITCH VERSUS TP STITCH

the ILP solver, while CSDP [31] as the SDP solver. ISCAS
benchmarks from [7] and [9] are scaled down and modified
as our test cases. The metal one layer is used for experimental
purposes, because it is one of the most complex layers in terms
of layout decomposition. The minimum coloring spacing mins

is set to 120 for the first ten cases and as 100 for the last five
cases, as in [16] and [18]. Parameter α is set to 0.1, thus
the decomposition cost is calculated by cn#+ 0.1 · st#, where
cn# and st# denote the conflict number and the stitch number,
respectively. Fig. 16 illustrates part of the decomposition result
for case S1488, which can be decomposed in 0.1 s.

A. DP Stitch Versus TP Stitch

First, we demonstrate the effectiveness of our stitch can-
didate generation. Table II compares the performance and
runtime of ILP on two different stitch candidates, i.e., DP
stitch and TP stitch. “ILP w. DP stitch” and “ILP w. TP
stitch” apply DP stitch and TP stitch, respectively. Note
that, here all graph-division techniques are applied here. The
columns “st#” and “cn#” denote the stitch number and the
conflict number. Column “CPU(s)” is computational time in
seconds. As discussed in Section III, through applying TP
stitch more stitch candidates would be generated, therefore,
we can see from Table II that 20% more runtime would be
introduced. However, TP stitch overcomes the lost stitch prob-
lem in DP stitch, thus the decomposition cost is reduced by
37%. In other words, compared with DP stitch, TP stitch can
provide higher performance in terms of the conflict number
and the stitch number.

YU et al.: LAYOUT DECOMPOSITION FOR TRIPLE PATTERNING LITHOGRAPHY 443

TABLE III
EFFECTIVENESS OF GRAPH DIVISION

Fig. 17. Value distribution in matrix X for cases C499 and C6288.

B. Effectiveness of Graph Division

Secondly, we show the effectiveness of the graph divi-
sion. Through applying these division techniques, the DG
size can be reduced. Generally speaking, smaller size of
DG, less runtime the ILP needs. Table III compares the per-
formance and runtime of ILP on two different DGs. Here,
“ILP w. ICC” means the DGs are only simplified by the ICC,
while “ILP w. 4SPD” means all the division techniques are
used. Columns “TCE#” and “TSE#” denote the total con-
flict edge number and total stitch edge number, respectively.
From Table III, we can see that compared with only using
ICC technique, further applying IVR and bridges detection
is more effective: the stitch edge number can be reduced by
92%, while the conflict number can be reduced by 93%. The
columns “st#” and “cn#” show the stitch number and the con-
flict number in the final decomposition results. “CPU(s)” is
computational time in seconds. Compared with the “ILP w.
ICC,” the “ILP w. 4SPD” can achieve the same results with
much less of the runtime for some smaller cases. For some big
circuits, the runtimes of “ILP w. ICC” are unacceptable, i.e.,
longer than 2 h. Note that if no ICC technique is used, even for
small circuits like C432, the runtime for ILP is unacceptable.

C. Effectiveness of SDP

Here, we show some more details of solutions in SDP. As
discussed before, if the value Xij is close to 1 or −0.5, it can

TABLE IV
EFFECTIVENESS OF POST-REFINEMENT

be directly rounded to an integer value. Otherwise, we have to
rely on some mapping methods. Fig. 17 illustrates the Xij value
distributions in circuit C499 and C6288. As we can see that
all for C499, the values are either in the range of [0.9, 1.0] or
in [− 0.5,−0.4]. In other words, here SDP is effective and its
results can be directly used as final decomposition results. For
the case C6288, since its result consists of several stitches and
conflicts, some Xij values are vague. But most of the values
are still distinguishable.

D. Effectiveness of Post-Refinement

We further demonstrate the effectiveness of the post-
refinement. Table IV lists the decomposition results of two
SDP-based algorithms. Columns “SDP w/o. Refinement” and
“SDP w. Refinement” mean SDP without and with post-
refinement, respectively. As shown in Table IV, through
additional post-refinement stage, the decomposition costs can
be reduced by 7%, while 39% more computational time is
introduced.

E. Comparison With Other Decomposers

Finally, we compare our decomposition algorithms with
the state-of-the-art layout decomposers [18], [20], [22], as

444 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 3, MARCH 2015

TABLE V
COMPARISON WITH OTHER DECOMPOSERS

TABLE VI
COMPARISON WITH OTHER DECOMPOSERS ON VERY DENSE LAYOUTS

shown in Table V. We have obtained executable programs
from [18] and [22]. Since we cannot get the decomposer
binary from [20], the results are directly from their paper.
Columns “ILP w. All” and “SDP w. All” denote ILP-
based algorithm and SDP-based algorithm, respectively. Here,
“w. All” means all other techniques, e.g., TP stitch, graph divi-
sion, and post-refinement, are applied. The decomposer [18] is
fast due to several graph-based division and coloring heuristic.
However, the nature of heuristic cannot guarantee good solu-
tion quality. Thus compared with [18], ILP-based methods and
SDP-based methods can reduce conflict number by 20%. The
decomposer [20] presents library-based approach, thus it can
provides fast solution when input layout is not complex, other-
wise heuristic methods would be applied. Compared with [20],
our ILP-based method and SDP-based method can reduce the
conflict number by 10% and 7%, respectively. For weighted
sum cost which is cn# + 0.1·st#, ILP-based method and SDP-
based method can reduce the cost by 3% and 1%, respectively.
The decomposer [22] relies on randomized coloring method
and SPQR-tree-based graph division. However, due to the
nature of randomized algorithms, the performance of [22] is
not good, and our methods can achieve around 30% cost reduc-
tion. Besides, since we provide a set of powerful graph division
techniques, ILP-based algorithms and SDP-based algorithms
can achieve 140× and 300× speed-up, respectively. ILP-based
algorithm has best performance in terms of conflict number,

1The results are directly from [20].

but it may suffer from longer runtime problem. Compared
with ILP, SDP-based algorithm provides much better trade-off
between runtime and performance, i.e., it can achieve very
comparable results (3% of conflict difference) and more than
2× speed-up.

In order to further evaluate the scalability of all the decom-
posers, we create six additional benchmarks (“c5_total” −
“c10_total”) to compare different algorithms on very dense
layouts. Table VI lists the comparison results. Columns
“TCE#” and “TSE#” denote the total conflict edge number
and total stitch edge number, respectively. It shall be noted
that Kuang and Young [20] cannot provide us the binary, since
their program cannot handle these cases. The reason is that
they assume that each DG component has at most six nodes.
Otherwise, the library-based approach, or even their heuristic
coloring method may fail. Unfortunately, such assumptions
cannot be held any more for the new benchmark suite. As we
can see, compared with SDP-based method, although ILP can
achieve the best decomposition results, its high runtime com-
plexity makes it impossible to solve one large dense layout,
even all the graph-division techniques are adopted. Although
the decomposer [18] is faster that all the cases can be fin-
ished in 1 s, it introduces hundreds of additional conflicts for
this new benchmark suite. Each conflict may require manual
layout modification or high ECO efforts, which are very time
consuming. In addition, compared with [22], our SDP-based
algorithms can achieve 36× speed-up and around 30% cost
reduction. Therefore, we can see that for these dense layouts,

YU et al.: LAYOUT DECOMPOSITION FOR TRIPLE PATTERNING LITHOGRAPHY 445

SDP-based algorithm can achieve good trade-off in terms of
runtime and performance.

IX. CONCLUSION

In this paper, we have proved that TPLD problem is
NP-hard, and the runtime required to solve it exactly increases
dramatically with the problem size. To reduce the problem
size, we presented a set of graph-division techniques. Then we
proposed a general ILP formulation to simultaneously mini-
mize the conflicts and stitches. Furthermore, we proposed a
novel vector program, and its SDP relaxation to improve scal-
ability for very dense layouts. Experimental results showed
that our methods are very effective. Triple patterning or even
quadruple patterning may be a promising manufacturing solu-
tion for sub-10 nm nodes. We believe the SDP-based methods
are generic and robust to be extended to quadruple patterning
problem. This paper will stimulate more future research into
this field.

ACKNOWLEDGMENT

The authors would like to thank Dr. K. Lucas and
Dr. G. Luk-Pat at Synopsys for helpful discussions, as well
as Dr. S.-Y. Fang and Y. Zhang for providing their layout
decomposer binaries [18], [22].

REFERENCES

[1] K. Lucas et al., “Double-patterning interactions with wafer pro-
cessing, optical proximity correction, and physical design flows,”
J. Micro/Nanolith. MEMS MOEMS (JM3), vol. 8, no. 3, 2009,
Art. ID 033002.

[2] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with
emerging nanolithography,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 32, no. 10, pp. 1453–1472, Oct. 2013.

[3] B. Yu et al., “Dealing with IC manufacturability in extreme scal-
ing,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
San Jose, CA, USA, 2012, pp. 240–242.

[4] K. Lucas et al., “Implications of triple patterning for 14 nm node design
and patterning,” Proc. SPIE, vol. 8327, Mar. 2012, Art. ID 832703.

[5] Y. Borodovsky, “Lithography 2009 overview of opportunities,” in Proc.
Semicon West, San Francisco, CA, USA, 2009.

[6] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decom-
position approaches for double patterning lithography,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 6, pp. 939–952,
Jun. 2010.

[7] K. Yuan, J.-S. Yang, and D. Z. Pan, “Double patterning layout decom-
position for simultaneous conflict and stitch minimization,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 2, pp. 185–196,
Feb. 2010.

[8] Y. Xu and C. Chu, “GREMA: Graph reduction based efficient mask
assignment for double patterning technology,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), San Jose, CA, USA, 2009,
pp. 601–606.

[9] J.-S. Yang, K. Lu, M. Cho, K. Yuan, and D. Z. Pan, “A new graph-
theoretic, multi-objective layout decomposition framework for double
patterning lithography,” in Proc. IEEE/ACM Asia South Pac. Design
Autom. Conf. (ASPDAC), Taipei, Taiwan, 2010, pp. 637–644.

[10] Y. Xu and C. Chu, “A matching based decomposer for double pat-
terning lithography,” in Proc. ACM Int. Symp. Phys. Design (ISPD),
San Francisco, CA, USA, 2010, pp. 121–126.

[11] X. Tang and M. Cho, “Optimal layout decomposition for double pat-
terning technology,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), San Jose, CA, USA, 2011, pp. 9–13.

[12] Q. Ma, H. Zhang, and M. D. F. Wong, “Triple patterning aware routing
and its comparison with double patterning aware routing in 14 nm tech-
nology,” in Proc. IEEE/ACM Design Autom. Conf. (DAC), San Francisco,
CA, USA, 2012, pp. 591–596.

[13] Y.-H. Lin, B. Yu, D. Z. Pan, and Y.-L. Li, “TRIAD: A triple pat-
terning lithography aware detailed router,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), San Jose, CA, USA, 2012,
pp. 123–129.

[14] B. Yu, X. Xu, J.-R. Gao, and D. Z. Pan, “Methodology for standard cell
compliance and detailed placement for triple patterning lithography,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose,
CA, USA, 2013, pp. 349–356.

[15] C. Cork, J.-C. Madre, and L. Barnes, “Comparison of triple-patterning
decomposition algorithms using aperiodic tiling patterns,” Proc. SPIE,
vol. 7028, May 2008, Art. ID 702839.

[16] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan, “Layout decompo-
sition for triple patterning lithography,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), San Jose, CA, USA, 2011, pp. 1–8.

[17] R. S. Ghaida, K. B. Agarwal, L. W. Liebmann, S. R. Nassif,
and P. Gupta, “A novel methodology for triple/multiple-patterning
layout decomposition,” Proc. SPIE, vol. 8327, Mar. 2012,
Art. ID 83270M.

[18] S.-Y. Fang, Y.-W. Chang, and W.-Y. Chen, “A novel layout decom-
position algorithm for triple patterning lithography,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 3, pp. 397–408,
Mar. 2014.

[19] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. Wong, “A polynomial time
triple patterning algorithm for cell based row-structure layout,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, 2012, pp. 57–64.

[20] J. Kuang and E. F. Young, “An efficient layout decomposition approach
for triple patterning lithography,” in Proc. IEEE/ACM Design Autom.
Conf. (DAC), Austin, TX, USA, 2013, pp. 1–6.

[21] H. Tian, Y. Du, H. Zhang, Z. Xiao, and M. Wong, “Constrained pattern
assignment for standard cell based triple patterning lithography,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, 2013, pp. 57–64.

[22] Y. Zhang, W.-S. Luk, H. Zhou, C. Yan, and X. Zeng, “Layout decom-
position with pairwise coloring for multiple patterning lithography,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose,
CA, USA, 2013, pp. 170–177.

[23] B. Yu et al., “A high-performance triple patterning layout decomposer
with balanced density,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), San Jose, CA, USA, 2013, pp. 163–169.

[24] B. Yu, J.-R. Gao, and D. Z. Pan, “Triple patterning lithography (TPL)
layout decomposition using end-cutting,” Proc. SPIE, vol. 8684,
Mar. 2013, Art. ID 86840G.

[25] Z. Chen, H. Yao, and Y. Cai, “SUALD: Spacing uniformity-aware lay-
out decomposition in triple patterning lithography,” in Proc. IEEE Int.
Symp. Qual. Electron. Design (ISQED), Santa Clara, CA, USA, 2013,
pp. 566–571.

[26] K. Yuan and D. Z. Pan, “WISDOM: Wire spreading enhanced decom-
position of masks in double patterning lithography,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA, USA, 2010,
pp. 32–38.

[27] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified
NP-complete graph problems,” Theor. Comput. Sci., vol. 1, no. 3,
pp. 237–267, 1976.

[28] R. Tamassia, “On embedding a graph in the grid with the minimum
number of bends,” SIAM J. Comput., vol. 16, no. 3, pp. 421–444, 1987.

[29] R. Tamassia, G. Di Battista, and C. Batini, “Automatic graph drawing
and readability of diagrams,” IEEE Trans. Syst., Man, Cybern., vol. 18,
no. 1, pp. 61–79, Jan./Feb. 1988.

[30] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.,
vol. 38, no. 1, pp. 49–95, 1996.

[31] B. Borchers, “CSDP, a C library for semidefinite programming,” Optim.
Methods Softw., vol. 11, no. 1, pp. 613–623, 1999.

[32] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[33] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. IEEE/ACM Design Autom.
Conf. (DAC), Las Vegas, NV, USA, 1982, pp. 175–181.

[34] L. A. Sanchis, “Multiple-way network partitioning,” IEEE Trans.
Comput., vol. 38, no. 1, pp. 62–81, Jan. 1989.

[35] T. T. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 1990.

[36] R. E. Tarjan, “A note on finding the bridges of a graph,” Inf. Process.
Lett., vol. 2, no. 6, pp. 160–161, 1974.

[37] Gurobi Optimization Inc. (2014). Gurobi Optimizer Reference Manual.
[Online]. Available: http://www.gurobi.com

446 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 3, MARCH 2015

Bei Yu (S’11–M’14) received the Ph.D. degree
from the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin,
TX, USA, in 2014.

He is currently a Post-Doctoral Scholar with the
Department of Electrical and Computer Engineering,
University of Texas at Austin. His current research
interests include design for manufacturability and
optimization algorithms.

Dr. Yu was the recipient of the Best Paper Awards
at the International Conference on Computer Aided

Design (ICCAD) 2013 and the Asia and South Pacific Design Automation
Conference (ASPDAC) 2012, three other Best Paper Award Nominations at
Design Automation Conference’14, ASPDAC’13, and ICCAD’11, the Chinese
Government Award for Outstanding Students Abroad in 2013, the Society of
Photo-Optical Instrumentation Engineers Education Scholarship in 2013, the
Silver Medal in ACM Student Research Contest at ICCAD’13, and the IBM
Ph.D. Scholarship in 2012.

Kun Yuan received the B.S. degree in electronic
engineering information science from the University
of Science and Technology of China, Hefei, China,
and the Ph.D. degree in electrical and computer
engineering from the University of Texas at Austin,
Austin, TX, USA, in 2004 and 2010, respectively.

He is currently a Senior Engineer with Facebook
Inc., San Jose, CA, USA.

Dr. Yuan was the recipient of the International
Symposium on Physical Design (ISPD) Routing
Contest Award in 2007, and the three Best Paper

Awards at Asia and South Pacific Design Automation Conference’10, ISPD
2011, and the IBM Research 2010 Pat Goldberg Memorial Best Paper Award
in CS/EE/Math.

Duo Ding received the Ph.D. degree from the
Department of Electrical and Computer Engineering,
the University of Texas at Austin, Austin, TX, USA,
in 2011.

He is currently a Principal Hardware Engineer
with Oracle, Austin.

Dr. Ding was the recipient of the 2013 ACM
Special Interest Group on Design Automation Best
Ph.D. Dissertation Award, the Best Paper Award in
the 2012 Asia and South Pacific Design Automation
Conference, and the Best Student Paper Award in

the 2009 International Conference on IC Design Technology, among many
other peer-reviewed conference and journal publications.

David Z. Pan (S’97–M’00–SM’06–F’14) received
the B.S. degree from Peking University, Beijing,
China, and the M.S. and Ph.D. degrees from
University of California, Los Angeles (UCLA),
Los Angeles, CA, USA.

From 2000 to 2003, he was a Research Staff
Member with IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA. He is currently the
Engineering Foundation Endowed Professor with the
Department of Electrical and Computer Engineering,
the University of Texas at Austin, Austin, TX, USA.

His current research interests include cross-layer nanometer IC design for
manufacturability/reliability, new frontiers of physical design, and CAD for
emerging technologies such as 3-D-IC, bio, and nanophotonics. He has pub-
lished over 200 papers in refereed journals and conferences, and holds eight
U.S. patents.

Prof. Pan was the recipient of several awards including the SRC 2013
Technical Excellence Award, the DAC Top Ten Author in Fifth Decade, the
DAC Prolific Author Award, 11 Best Paper Awards, and several International
CAD Contest Awards, Communications of the ACM Research Highlights’14,
the ACM/SIGDA Outstanding New Faculty Award in 2005, the NSF CAREER
Award in 2007, the SRC Inventor Recognition Award thrice, the IBM Faculty
Award four times, the UCLA Engineering Distinguished Young Alumnus
Award in 2009, and the UT Austin RAISE Faculty Excellence Award in
2014. He has served as a Senior Associate Editor of the ACM Transactions
on Design Automation of Electronic Systems, an Associate Editor of the
IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, the IEEE TRANSACTIONS ON VERY LARGE

SCALE INTEGRATION SYSTEMS, the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—PART-I, the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART-II, the Science China Information Sciences, the Journal of
Computer Science and Technology, and the IEEE CAS Society Newsletter. He
has served as the Chair of the IEEE CANDE Committee and the ACM/SIGDA
Physical Design Technical Committee, Program/General Chair of ISPD, TPC
Subcommittee Chair for DAC, ICCAD, ASPDAC, ISLPED, ICCD, Tutorial
Chair for DAC 2014, and a Workshop Chair for ICCAD 2015, among others.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

