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ABSTRACT
Deep Neural Networks (DNNs) have been widely applied in au-
tonomous systems such as self-driving vehicles. Recently, DNN
testing has been intensively studied to automatically generate ad-
versarial examples, which inject small-magnitude perturbations into
inputs to test DNNs under extreme situations. While existing testing
techniques prove to be effective, particularly for autonomous driving,
they mostly focus on generating digital adversarial perturbations,
e.g., changing image pixels, which may never happen in the physical
world. Thus, there is a critical missing piece in the literature on
autonomous driving testing: understanding and exploiting both digi-
tal and physical adversarial perturbation generation for impacting
steering decisions. In this paper, we propose a systematic physical-
world testing approach, namely DeepBillboard, targeting at a quite
common and practical driving scenario: drive-by billboards. Deep-
Billboard is capable of generating a robust and resilient printable
adversarial billboard test, which works under dynamic changing
driving conditions including viewing angle, distance, and lighting.
The objective is to maximize the possibility, degree, and duration of
the steering-angle errors of an autonomous vehicle driving by our
generated adversarial billboard. We have extensively evaluated the
efficacy and robustness of DeepBillboard by conducting both exper-
iments with digital perturbations and physical-world case studies.
The digital experimental results show that DeepBillboard is effective
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for various steering models and scenes. Furthermore, the physical
case studies demonstrate that DeepBillboard is sufficiently robust
and resilient for generating physical-world adversarial billboard tests
for real-world driving under various weather conditions, being able
to mislead the average steering angle error up to 26.44 degrees. To
the best of our knowledge, this is the first study demonstrating the
possibility of generating realistic and continuous physical-world
tests for practical autonomous driving systems; moreover, Deep-
Billboard can be directly generalized to a variety of other physical
entities/surfaces along the curbside, e.g., a graffiti painted on a wall.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are being widely applied in many au-
tonomous systems for their state-of-the-art, even human-competitive
accuracy in cognitive computing tasks. One such domain is au-
tonomous driving, where DNNs are used to map the raw pixels from
on-vehicle cameras to the steering control decisions [6, 23]. Recent
end-to-end learning frameworks make it even possible for DNNs to
learn to self-steer from limited human driving datasets [4].

Unfortunately, the reliability and correctness of systems adopt-
ing DNNs as part of their control pipeline have not been formally
guaranteed. In practice, such systems often misbehave in unexpected
or incorrect manners, particularly in certain corner cases due to
various reasons such as overfitted/underfitted DNN models, biased
training data, or incorrect runtime parameters. Such misbehaviors
may cause severe consequences given the safety-critical nature of
autonomous driving. A recent example of tragedy is that an Uber
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Figure 1: The top subfigure shows an example customizable
roadside billboard. The bottom two subfigures show an adver-
sarial billboard example, where the Dave [4] steering model di-
verges under our proposed approach.
self-driving car struck and killed an Arizona pedestrian because the
autopilot system made an incorrect control decision that “it didn’t
need to react right away” when the victim was crossing the road
at night. Even worse, recent DNN testing research has shown that
DNNs are rather vulnerable to intentional adversarial inputs with
perturbations [5, 15, 22, 27, 32]. Such adversarial inputs can be
digitally crafted by adding malicious perturbations to the original
inputs, causing the targeted DNN to output incorrect control deci-
sions. The root cause of adversarial inputs and how to systematically
generate such inputs are being studied in many recent DNN testing
works [5, 9, 18, 19, 29, 30, 33, 39]. While these works propose
various testing techniques that prove to be effective, particularly for
autonomous driving, they mainly focus on generating digital ad-
versarial perturbations, which may never happen in physical world.
The only exception is a recent set of works [9, 30], which take first
step in printing robust physical perturbations that lead to misclassi-
fication of static physical objects (i.e., printouts in [2], human face
in [30], and stop sign in [9]). Our work seeks to further enhance
physical-world testing of autonomous driving by enhancing test ef-
fectiveness during a realistic, continuous driving process. Focusing
on generating adversarial perturbations on any single snapshot of
any misclassified physical object is unlikely to work in practice, as
any real-world driving scenario may encounter driving conditions
(e.g., viewing angle/distance) that are dramatically different from
those in that static single-snapshot view.

In this paper, we propose a systematic physical-world testing
approach, namely DeepBillboard, targeting at a quite common and
practical continuous driving scenario: an autonomous vehicle drives
by roadside billboards. DeepBillboard contributes to the systematic
generation of adversarial examples for misleading steering angle
when perturbations are added to roadside billboards in either a digital
or physical manner. Note that the basic idea can also be directly
generalized to a variety of other physical entities/surfaces besides
just billboards along the roadside, e.g., a graffiti painted on a wall; in
this work, we choose the roadside billboards as our targeted physical
driving scenario for several practical considerations: (1) Billboards
are available to rent for advertising everywhere. Attackers who rent
billboards can customize their sizes and contents, as illustrated in
Fig. 1; (2) Billboards are usually considered irrelevant or benign to
the safety of transportation, and there are no strict rules regulating the
appearance of a billboard; (3) Billboards are usually large enough to

read by drivers and thus dashcams for cars with different distances,
viewing angles, and light conditions; (4) An attacker may easily
construct a physical world billboard to affect the steering decision
of driving-by autonomous vehicles without others noticing, e.g.,
the actual core adversarial painting can only be a part of the entire
billboard while the other parts of the billboard can still look normal,
e.g., some bottom text bar showing “Art Museum This Saturday”.

The objective of DeepBillboard is to generate a single adver-
sarial billboard image that may mislead the steering angle of an
autonomous vehicle upon every single frame captured by onboard
dashcam during the process of driving by a billboard. To generate
effective perturbations, a major challenge is to cover a set of image
frames exhibiting different conditions, including distance to the bill-
board, viewing angle, and lighting. Simply applying existing DNN
testing techniques [29, 33, 39] to generate digital perturbations upon
any specific frame clearly does not work in this case, because a
realistic driving scene may not incur any frame with same or simi-
lar conditions (e.g., inserting sky black holes as done in the recent
award-winning DeepXplore work [29]). Besides, the effectiveness of
single frame perturbation may be not effective, since a mis-steering
upon a frame may be quickly corrected by the next frame.

To resolve this critical challenge, we develop a robust and re-
silient joint optimization algorithm, which generates a printable
billboard image with perturbations that may mislead the steering
angle upon every single frame captured by the dashcam during the
entire driving process. To maximize the adversarial effectiveness,
we develop various techniques to minimize interferences among
per-frame-perturbations, and design the algorithm towards achieving
global optimality considering all frames. Moreover, by inputting
videos that record the process of driving by a roadside billboard with
different driving patterns (e.g., driving speed and route), our algo-
rithm can be easily tuned to generate printable adversarial image that
is robust and resilient considering various physical world constraints
such as changing environmental conditions and pixel printability
due to printer hardware constraints.

Contributions. Considering such a real-world driving scenario and
developing a corresponding digital and physical adversarial test
generation method yield obvious advantages in terms of test effec-
tiveness: the possibility, degree, and duration of misled steering
decisions of any driving-by vehicles due to the adversarial billboards
can be reliably increased. Our key contributions are summarized as
follow.

(1) We propose a novel angle of testing autonomous driving
systems in the physical world that can be easily deployed.

(2) We introduce a robust joint optimization method to systemat-
ically generate adversarial perturbations that can be patched
on roadside billboards both digitally and physically to consis-
tently mislead steering decisions of an autonomous vehicle
driving by the billboard with different driving patterns.

(3) We propose new evaluation metrics and methodology to mea-
sure the test effectiveness of perturbations for steering models
in both digital and physical domains.

(4) We prove the robustness and effectiveness of DeepBill-
board through conducting extensive experiments with both
digital perturbations and physical case studies. The digital
experimental results show that DeepBillboard is effective for
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various steering models and scenes, being able to mislead
the average steering angle up to 41.93 degrees under various
scenarios. The physical case studies further demonstrate that
DeepBillboard is sufficiently robust and resilient for generat-
ing physical-world adversarial billboard tests for real-world
driving under various weather conditions, being able to mis-
lead the average steering angle error from 4.86 up to 26.44
degree. To the best of our knowledge, this is the first study
demonstrating the possibility of generating realistic and con-
tinuous physical-world tests for practical autonomous driving
scenarios.

2 BACKGROUND AND RELATED WORK
DNN in Autonomous Driving. An autonomous driving system cap-
tures surrounding environmental data via multiple sensors (e.g. cam-
era, Radar, Lidar) as inputs, processes these data with DNNs and
outputs control decisions (e.g. steering). In this paper, we mainly fo-
cus on the steering angle component with camera inputs and steering
angle outputs, as adopted in NVIDIA Dave [4].

Convolutional Neural Network (CNN), which is efficient at an-
alyzing visual imagery, is the most widely used DNN for steering
angle decisions. Similar to regular neural networks, CNNs are com-
posed of multiple layers and pass information through layers in a
feed-forward way. Among all layers, the convolutional layer is a key
component in CNNs, which performs convolution with kernels on
the output of previous layers and sends the feature maps to successor
layers. Different from another widely used DNN architecture – Re-
current Neural Networks (RNNs) which is a kind of neural network
with feedback connections, CNN-based steering model makes steer-
ing decisions based only on the currently captured image. In this
paper, we focus on the testing of CNN steering models and leave
RNN testing as future work. We nonetheless note that DeepBill-
board can be adapted to apply to RNN testing. Intuitively, this can
be achieved by modifying the gradient calculation method according
to RNN’s specific characteristics.
Digital Adversarial Examples. Recent research shows that deep
neural network classifier can be tested and further fooled by adversar-
ial examples [5, 15, 20, 22, 27, 32]. Such testing can be performed
in both black-box [25, 26] and white-box [5, 15, 22, 27, 32] settings.
Goodfellow et al. proposed the fast gradient method that applies a
first-order approximation of the loss function to construct adversar-
ial samples [14]. Optimization-based methods have also been pro-
posed to create adversarial perturbations for targeted attacks [5, 16].
Meanwhile, the recent DeepTest [33] and DeepRoad [39] techniques
transform original images to generate adversarial images via sim-
ple affine/filter transformations or Generative Adversarial Networks
(GANs) [13]. Overall, these methods contribute to understanding
digital adversarial examples, and the generated adversarial examples
may never exist in reality (e.g., the rainy driving scenes generated
by DeepTest [33] and DeepRoad [39] are still far from real-world
scenes). By contrast, our work examines physical perturbations on
real objects (billboards) under dynamic conditions such as changing
distances and view angles.
Physical Adversarial Examples. Kurakin et al. showed that adver-
sarial examples, when photoed by a smartphone camera, can still

lead to misclassification [15]. Athalye et al. introduced an attack-
ing algorithm to generate physical adversarial examples that are
robust to a set of synthetic transformations [3]. They further created
3D-printed replicas of perturbed objects [3]. The main differences
between aforementioned works and our work include: (1) Previous
works only use a set of synthetic transformations during optimiza-
tion, which can miss subtle physical effects; while our work can
sample from both synthetic transformations and various real-world
physical conditions. (2) Our work modifies real-world true-sized ob-
jects; and (3) Our work targets the testing of realistic and continuous
driving scenarios.

Sharif et al. presented dodging and impersonation attacks for
DNN-based face recognition systems by printing adversarial per-
turbations on the eyeglasses frames [30]. Their work demonstrated
successful physical attacks in relatively stable physical conditions
with little variation in pose, distance/angle from the camera, and
lighting. This contributes an interesting understanding of physical
examples in stable environments. However, environmental condi-
tions can vary widely in general and can contribute to reducing the
effectiveness of perturbations. Therefore, we choose the inherently
unconstrained environment of drive-by billboards classification. In
our work, we explicitly design our perturbations to be effective in
the presence of diverse and continuous physical-world conditions
(particularly, large distances/angles and resolution changes).

Lu et al. performed experiments with physical adversarial exam-
ples of road sign images against detectors and show that current
detectors can be attacked [17]. Several more recent works have
demonstrated adversarial examples against detection/segmentation
algorithms digitally [8, 21, 38]. The most recent work for attacking
autonomous driving systems are the works conducted by Eykholt
and Evtimov et al. They showed that physical robust attacks can
be constructed for road signs classifiers [9], and such attacks can
be further extended to attack YOLO detectors [10]. Our work dif-
fers from such works due to the fact that: (1) we target attacking
steering models by constructing printable perturbations on drive-by
billboards, which can be anywhere and have much more impacts
than road signs; (2) our proposed algorithm considers a sequence of
contiguous frames captured by dashcams with gradually changing
distances and viewing angles, and seeks to maximize the possibility
and the degree of misleading the steering angles of an autonomous
vehicle driving by our adversarial roadside billboard; and (3) we
introduce a new joint optimization algorithm to efficiently generate
such attacks both digitally and physically.

3 GENERATING ADVERSARIAL PATTERN
3.1 Adversarial Scenarios
The goal of DeepBillboard is to mislead the steering angle of an
autonomous vehicle, causing off-tracking from the center of the lane
by painting the adversarial perturbation on the billboard alongside
the road. Our targeted DNNs are CNN-based steering models [4, 12,
31, 35, 36], without involving detection/segmentation algorithms.
The steering model takes images captured by dashcam as inputs, and
outputs steering angle decisions.

We use off-tracking distance to measure the test effectiveness
(i.e., the strength of steering misleading), which has been applied in
Nvidia’s Dave [4] system to trigger human interventions. Assume
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the vehicle’s speed is v m/s, the decision frequency of using DNN
inference is i second(s), the ground truth steering angle is α , and
the misleading steering angle is α ′, then the off-tracking distance is
calculated by v · i · sin(α ′ − α ). In a potential physical world attack,
the speed of the vehicle usually are not controllable by the tester/at-
tacker. Thus we use steering angle error which is the steering angle
divergence between ground truth and misled steering to measure the
test effectiveness.

Instead of misleading the steering decision only at a single, fixed
distance and view angle, we consider the actual driving-by scenario.
Specifically, when a vehicle is driving towards the billboard, we
seek to generate a physical adversarial billboard that may mislead
the steering decision upon a sequence of dashcam-captured frames
viewing from different distances and angles. The number of cap-
tured frames clearly depends on the FPS of the dashcam and the
time used for the vehicle to drive from the starting position till phys-
ically passing the billboard. Considering such a real-world dynamic
driving scenario yields obvious advantage in terms of attacking
strength: the possibility and the degree of misled steering decisions
of any driving-by vehicles due to the adversarial billboards can be
reliably increased. We emphasize that this consideration also funda-
mentally differentiate the algorithmic design of DeepBillboard from
applying simpler strategies such as random search, average/max
value-pooling, different order etc. Applying such simpler methods
would improve a misleading angle for a single frame yet lowering
the overall objective. After a few iterations, such methods hardly
improve the objective.

3.2 Evaluating Matrices
Our evaluating metrics aim to reflect the attacking strength and
possibility. Vehicles may pass by our adversarial billboard with
different speeds and slightly different angles, which may impact the
number of image frames captured by the camera and the billboard
layout among different frames. Assume X̂={x0, x1, x2, ... , xn}
denotes an exhaustive set of image frames possibly captured by a
drive-by vehicle with any driving pattern (e.g., driving speed and
route), then frames captured by any drive-by vehicle are clearly a
subset X ⊆ X̂. Our objective is to generate the physical printable
billboard which can affect (almost) every frame in X̂, such that any
subset X corresponding to a potential real-world driving scenario
may have a maximized chance to be affected. To meet this objective,
we define two evaluating metrics denoted M0, M1 as follows.

M0 measures the average angle error (AAE) for frames in X̂:

M0 = Av g
0<i< ∥X̂ ∥

(f (x ′i ) − f (xi )), (1)

where f (·) denotes the prediction result of the targeted steering
model, x ′ denotes the perturbed frame. This metric measures the
average strength of attacks to the frame super set. A larger M0 intu-
itively would imply a higher chance and a larger error of misleading
the steering angle during the process of driving by the billboard.

M1 measures the percentage of frames in X whose angle error
exceeds a predefined threshold, denoted by τ . τ can be calculated
based on the physical driving behavior. A formal definition of M1 is

given by:

M1 =
∥{xi | f (x ′i ) − f (xi ) > τ , 0 < i < ∥X̂ ∥}∥

∥X̂ ∥
. (2)

For example, if we want to mislead a 40MPH autonomous vehicle
by an off-track distance of one meter within a time interval of 0.2
seconds,1 then τ can be calculated as 16.24. We mainly adopt M1 as
an evaluating metric for our physical-world case studies, as M1 can
clearly reflect the number of frames that incur unacceptable steering
decisions (e.g., those that may cause accidents) given any reasonable
predefined threshold according to safety stands in practice.

3.3 Challenges
Physical attacks on an object should be able to work under changing
conditions and remain effective at fooling the classifier. We struc-
ture our discussion of these conditions using our targeted billboard
classification. A subset of these conditions can also be applied to
other types of physical learning systems such as drones and robots.

Spatial Constraints. Existing adversarial algorithms mostly focus
on perturbing digital images and add adversarial perturbations to
all parts of the image, including background imagery (e.g., sky).
However, for a physical billboard, the attacker cannot manipulate the
background imagery other than the billboard area. Furthermore, the
attacker cannot assume that there exists a fixed background imagery
as it will change depending on the distance and viewing angle of the
dashcam of a drive-by vehicle.

Physical Limits on Imperceptibility. An attractive feature of exist-
ing adversarial learning algorithms is that their perturbations to a
digital image are often small in magnitude such that the perturba-
tions are almost imperceptible to a casual observer. However, when
transferring such minimal perturbations to a real world physical
image, we must ensure that a camera is able to perceive the pertur-
bations. Therefore, there are physical constraints on perturbation
imperceptibility, which is also dependent on the sensing hardware.

Environmental Conditions. The distance and angle of a camera
in a drive-by autonomous vehicle with respect to a billboard may
consistently vary. The captured frames that are fed into a classifier
are taken at different distances and viewing angles. Therefore, any
perturbation that an attacker physically adds to a billboard must be
able to survive under such dynamics. Other impactful environmen-
tal factors include changes in lighting/weather conditions and the
presence of debris on the camera or on the billboard.

Fabrication Error. To physically print out an image with all con-
structed perturbations, all perturbation values must be valid colors
that can be printed in the real world. Furthermore, even if a fabrica-
tion device, such as a printer, can produce certain colors, there may
exist certain pixel mismatching errors.

Context Sensitivity. Every frame in X̂ must be perturbed consider-
ing its context in order to maximize the overall attacking strength
(maximizing M0 for instance). Each perturbed frame can be mapped

1We note that an autonomous vehicle would likely not run classification on every frame
due to performance constraints, but rather classify every j-th frame, and then perform
simple majority voting.
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to a printable adversarial image with a certain view angle and dis-
tance. Each standalone frame has its own optimal perturbation. How-
ever, we need to consider all frames’ context to generate a single
printable adversarial image that is globally optimal w.r.t. all frames.

In order to physically attack deep learning classifiers, an attacker
should account for the above physical world constraints, for other-
wise the effectiveness can be significantly weakened.

3.4 The Design of DeepBillboard
We design DeepBillboard, which generates a single printable im-
age that can be pasted on a roadside billboard by analyzing given
driving videos where vehicles drive by a roadside billboard with
different driving patterns, for continuously misleading the steering
angle decision of any drive-by autonomous vehicle. DeepBillboard
starts with generating perturbations for every frame fi of a given
video without considering frame context and other physical condi-
tions. We then describe how to update the algorithm to resolve the
aforementioned physical world challenges. We finally describe the
algorithmic pseudocode of DeepBillboard in detail. We note that
it may not be practically possible to construct the exhaustive set
of image frames (i.e. X̂), possibly captured by a drive-by vehicle
with any driving pattern (e.g., driving speed and route). Nonetheless,
processing a larger number of driving videos will clearly strengthen
the testing effectiveness of DeepBillboard due to a larger X̂, at the
cost of increased time complexity.

The single frame adversarial example generation searches for a
perturbation σ to be added to the input x such that the perturbed
input x ′ = x + δ can be predicted by the targeted DNN steering
model f (·) as

max H (f (x + δ ),Ax ),

where H is a chosen distance function and Ax is the ground truth
steering angle. Typically, the ground truth in our evaluation is the
original prediction steering angle without applying the adversarial
billboard, which is f (x ) by our definition. To solve the above con-
strained optimization problem, we reformulate it in the Lagrangian-
relaxed form similar to prior work [9, 30]:

argmin
δ

(−L(f (x + δ ),Ax )), (3)

where L is the loss function which measures the difference between
the model’s prediction and ground truth Ax . The attacking scenario
in this paper can be treated as inference dodging which aims to not
being correctly inferred.

Joint Loss Optimization. As discussed earlier, our objective is to
generate a single adversarial image that may mislead the steering
angle of an autonomous vehicle upon every single frame the dashcam
may capture during driving by the billboard. The appearance of the
adversarial billboard may vary when being viewed from different
angles and distances. As a result, to meet the objective, we need
to generate one single printable adversarial perturbation that can
mislead every single frame captured during the driving-by process.
This is clearly an optimization problem beyond a single image. It is
thus necessary to consider all frames jointly since one modification
on the billboard affects all frames. To this end, the problem becomes
finding a single perturbation ∆ that optimizes Eq. 3 for every image

x in an image set X . We formalize this perturbation generation as
the following optimization problem.

argmin
∆

∑
0<i< ∥X ∥

(−L(f (xi + pi (∆)),Ax )), (4)

where pi is the projection function of printable perturbation ∆ into
every single frame i.

Handling Overlapped Perturbations. Every single frame may gen-
erate a set of perturbations which is composed of multiple pixels to
be updated on the ultimate printable adversarial image. Perturbations
of multiple frames may encounter overlapped pixels, which may pro-
duce interferences among those frames. To maximize the attacking
strength, DeepBillboard seeks to minimize the overlapped perturba-
tions among multiple frames by only updating a fixed number of k
pixels for each single frame in order. The k pixels are those that have
the most impact on misleading the steering decision. We assume
the final adversarial billboard image covering n dashcam-captured
frames is composed of m pixels. k is a value satisfying n · k < m,
which helps reduce the overall chance of perturbation overlapping
among frames. For each overlapped pixel, we update it by greedily
choosing a value that maximizes the objective metric (e.g., M0).

Enhancing Perturbation Printability. For the perturbation to work
in the physical world, each perturbed pixel needs to be a printable
value by existing printer hardware. Let P ⊂ [0, 1]3 be the set of
printable RGB triples. We define non-printability score (NPS) of a
pixel to reflect the maximum distance between this pixel and any
pixel in P . A larger NPS value would imply a smaller chance of
accurately printing out the corresponding pixel. Our algorithm thus
seeks to minimize NPS as part of the optimization. We define the
NPS of a pixel p′ as:

NPS(p′) =
∏
p∈P

|p′ − p |. (5)

We generalize the definition of NPS of a perturbation as the sum of
NPS values of all the pixels in this perturbation.

Adjust Color Difference under Various Environment Conditions.
For different environmental conditions, the observable color of the
same pixel belonging to the billboard image may look different in
the video captured by a dashcam. Such a difference may impact
the adversarial efficacy under different conditions. In our physical
world experiments, we pre-fill the entire billboard with unicolor
p = {r ,д,b}. Under a specific environment condition e, its actual
color shown in camera may become p′ = {r ′,д′,b ′}. Based on our
preliminary experiments, we observe that such color differences
of pixels in the same image are almost the same. To simplify the
problem, we introduce a color adjustment function AD Ji = di (p,p′)
for each image xi to adjust the color difference.

Algorithm overview. The procedure of DeepBillboard for generat-
ing an adversarial billboard image is illustrated in Fig. 2. To generate
an adversarial billboard image, we first pre-fill the billboard with
unicolor, and paint its four corners with contrasting colors for the
purpose of (1) locating the coordinates of the billboard digitally,
and (2) getting the color adjustment function AD Ji . Then we record
video using dashcam and drive by the billboard with different driving
behaviors (e.g., different driving speeds and driving patterns) along
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Figure 2: Work flow of DeepBillboard to generate adversarial perturbations for contiguous frames, where pi represents the ith frame.

Algorithm 1 Generating attacks for maximizing M0

Require: IMGS ▷ List of images of the same scene
Require: COORD ▷ List of coordinates of billboards in IMGS
Require: ITER ▷ Number of enhance iterations
Require: BSZ ▷ Number of images in a batch
Require: ADJ ▷ List of adjustment for environment factors
Require: DIM ▷ Dimensions of printable perturbation
Require: DIRECTION ▷ Desired misleading direction, 1 represents

left, -1 represents right
1: function GENERATE

2: perturb = COLOR_INIT(DIM)
3: pert_data = zero(BSZ, DIM)
4: last_diff = 0
5: for i in ITER do
6: random.shuffle(IMGS)
7: for j in range(0,len(IMGS), BSZ) do
8: batch = IMGS[j, j+BSZ]
9: pert_data.clear()

10: for x in batch do
11: grad =∂ob j/∂x · DIRECTION
12: grad = DOMAIN_CONSTRNTS(grad)
13: pert_data[x] = REV_PROJ(grad, ADJ)
14: pert_data = HANDLE_OVERLAP(pert_data)
15: atmpt_pert = pert_data · s + perturb
16: atmpt_pert = NPS_CTL(atmp_per, ADJ)
17: atmpt_imgs := UPDATE_IMGS(atmpt_pert, COORD)
18: this_diff = CALC_DIFF(atmp_imgs)
19: if this_diff > last_diff or rand() < SA then
20: perturb = APPLY(perturb)
21: imgs := UPDATE_IMGS(perturb, COORD)
22: last_diff = this_diff
23: return perturb

the road. Then we send the pre-recorded videos to our algorithm
as inputs to generate the printable adversarial billboard image. As
discussed earlier, inputting a larger number of driving videos will
clearly strengthen the testing effectiveness of DeepBillboard, at the
cost of increased time complexity.

The pseudocode of our adversarial algorithm is illustrated in
Alg. 1. Our algorithm is essentially iteration-based. In each iteration,
we first obtain perturbation proposals for a batch of randomly chosen
images according to their gradients which reflect the influence of
every pixel to the final objective. We then greedily apply only those

proposed perturbations that may lead to better adversarial effect. We
apply a sufficient number of iterations to maximize steering angle
divergence and the perturbation robustness.

As seen at the beginning of Alg. 1, the inputs include: a list of
frames in the pre-recorded videos, a list of coordinates of the four
corners in the billboard in every frame, number of enhancing itera-
tions, batch size, a list of color adjustment factors, and the dimension
of targeted digital perturbation. As illustrated in Alg. 1, perturb is a
printable perturbation matrix that is composed of RGB pixel values
(line 2). We use COLOR_IN IT to pre-fill the printable perturbation
matrix with one unicolor c ∈ {0|255}3. Based on our extensive dig-
ital and physical experiments, using unicolor-prefilled matrix may
result in better results and faster convergence. According to our
experiments, gold, blue, and green are the most efficient unicolors
for our testing purposes. pert_data is a list of matrices which store
the proposed perturbations for a batch of images (line 2). Lines 5
to 22 loop through enhanced iterations which aim to maximize the
adversarial effectiveness and the perturbation robustness. At line
6, we randomly shuffle the processing order of captured frames.
The purpose is to avoid quick convergence to a non-optimal point at
early video frames (similar to deep neural network training). Starting
from line 7, we loop over all the images which are split into batches.
For each image batch, we initialize and clear pert_data (lines 8-9)
before looping over every single image inside the batch (line 10).

For each image x within a batch, we calculate its gradient which
is the partial derivative [14] of object function to the input image
(line 11). By iteratively changing x using gradient ascent, the object
function can be easily maximized. We note that we can intentionally
mislead targeted steering model to steer left or right by selecting
a positive or negative value of gradient, which is controlled by a
DIRECTION value of -1,1 (line 11). We then apply domain con-
straints to the gradient (line 12) to ensure that we only update the
pixels belonging to the corresponding area of the billboard, and the
pixel values after gradient ascent are within a certain range (e.g., 0
to 255). In the implementation, as discussed earlier, we introduce
a parameter k to only apply top k gradient values that have the
most impact on adversarial efficacy. This is to reduce the overlapped
perturbations among all images. Different from the saliency map
used in JSMA [28] which represents the confidence score of x being
classified into targeted class for the current image, we consider the
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Table 1: Studied scenes for digital experiments.
Scenes Img Size BB_min BB_max

Dave-straight1 54 455 × 256 21 × 22 41 × 49
Dave-curve1 34 455 × 256 29 × 32 51 × 49
Udacity-straight1 22 640 × 480 48 × 29 66 × 35
Udacity-curve1 80 640 × 480 51 × 51 155 × 156
Kitti-straight1 20 455 × 1392 56 × 74 121 × 162
Kitti-straight2 21 455 × 1392 80 × 46 247 × 100
Kitti-curve1 21 455 × 1392 64 × 74 173 × 223

influence to the joint objective function for all images in this scene,
seeking to maximize the average steering angle difference from
ground truth. After constraining the applicable gradients, we project
the gradient values for each image x to the proposed perturbations
of the batched images (line 13). ADJ (i.e., the input list of adjust-
ments for environment factors) is used to correct color difference
for different lighting conditions. For example, if a pure yellow color
(255, 255, 0) becomes (200, 200, 0), then AD J is set to be (55, 55, 0).
When projected to the physical billboard, the gradient value should
be increased by (55, 55, 0).

After all images in the batch get their gradients, there may exist
overlapped perturbations among them. That is, for each pixel corre-
sponding to overlapped perturbations, it may have multiple proposed
update values for the ultimate printable adversarial example. To
handle such overlaps (line 14), we implemented three methods: (1)
update the overlapped pixels with the max gradient value among pro-
posed perturbations, (2) update the overlapped pixels with the sum
of all gradient values, and (3) update the overlapped pixels with one
of the proposed values that has the greatest overall influence to the
objective function. Then at line 15, we calculate the proposed update
atmpt_pert by adding gradients to the current physical perturba-
tion perturb. After color corrections and non-printable score control
(line 16), the proposed perturbations for the physical billboard are
projected to the images according to the coordinates (line 17). We
calculate the total steering angle difference for perturbed images
(line 18). If the proposed perturbations can improve the objective,
or meet the simulated annealing to avoid the local optimum (line
19) [37] indicated by SA, we accept the proposed perturbations (line
20) and update all images with these perturbations (line 21). Then
we record the current iteration’s total steering angle divergence and
use it as the starting point in the next iteration. When all enhanced
iterations are finished, we return the physical perturbation perturb
as the resultant output. We note that, although our major goal is to
generate physical perturbations, the output can be directly patched
to digital images as well.

4 EVALUATION
In this section, we evaluate the efficacy of DeepBillboard both digi-
tally and physically for various steering models and road scenes.

4.1 Experiment Setup
Datasets and Steering Models. We use four pre-trained popular
CNNs as targeted steering models, which have been widely used
in autonomous driving testing [18, 29, 33, 39]. Specifically, we test
three models based on the DAVE self-driving car architecture from

NVIDIA, denoted as Dave_V1 [24], Dave_V2 [12], Dave_V3 [31],
and the Epoch model [35] from the Udacity challenge [34]. Specifi-
cally, Dave_V1 is the original CNN architecture presented in NVIDIA’s
Dave system [4]. Dave_V2 [12] is a variation of Dave_V1 which
normalizes the randomly initialized network weights and removes
the first batch normalization layer. Dave_V3 [31] is another publicly
available steering model which modifies the original Dave model by
removing two convolution layers and one fully connected layer, and
inserting two dropout layers among the three fully connected layers.
As the pre-trained Epoch weights are not publicly available, we train
it following the instructions provided by the corresponding authors
using the Udacity self-driving Challenge dataset [34].

The datasets used in our experiments include: (1) Udacity self-
driving car challenge dataset [34] which contains 101,396 training
images captured by a dashboard mounted camera of a driving car
and the simultaneous steering wheel angle applied by the human
driver for each image; (2) Dave testing dataset [7] which contains
45,568 images recorded by a GitHub user to test the NVIDIA Dave
model; and (3) Kitti [11] dataset which contains 14,999 images from
six different scenes captured by a VW Passat station wagon equipped
with four video cameras.

The dataset used for our physical case studies consists of videos
recorded by a tachograph mounted behind the windshield of a driving
car for driving by a pre-placed roadside billboard on campus. We use
aforementioned pre-trained steering models to predict every frame,
and use the resultant steering angle decisions as the ground truth.

Experiment Design. Based on our discussion from Section 3.2, we
evaluate the efficacy of our algorithm by measuring the Average
Angle Errors of all frames in a scene, both digitally and physically.
For digital tests, our scene selection criteria is that the billboard
should appear entirely in the first frame with more than 400 pixels
(since billboards containing less than 400 pixels, when being printed
out and applied in physical world, are too small to be meaningful
and useful towards adversarial purposes). We then randomly select
seven scenes that satisfy this criteria from aforementioned datasets,
and evaluate on all the selected scenes. The selected scenes in each
dataset cover both straight and curved lane scenarios. Since all these
datasets do not contain coordinates of billboards, we have to label the
four corners of billboards in every frame of the selected scenes. To
make the labeling process semi-automated, we use the motion tracker
functionality of Adobe After Effects [1] to automatically track the
movement of billboard’s four corners among consecutive frames.
We then perform necessary adjustments for certain frames whose
coordinates are not accurate enough. We list the statistics about all
the studied scenes in Table 1, where the first column lists the names
of scenes, the second column shows the number of images in every
scene, the third to fifth columns indicate the resolutions of images
and the min/max sizes of billboards in each scene. In digital tests,
there is no color adjustment under different environmental conditions.
The final adversarial example is patched into every frame according
to the projection function. Then we use the steering models to predict
the patched images and compare them against the ground-truth
steering decisions recorded in the given datasets.

Our compared baseline is the inference steering angle for each
given trained model. Our approach seeks to maximize the distance
from the baseline, regardless whether baseline is ground truth or
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Table 2: Average steering angle errors for various scenes.
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Figure 3: Steering angle error variations along the timeline
inference results. We choose to present results associated with us-
ing inference as the baseline because the driving datasets used in
experiments may not have ground truth steering angle. Since there
exists many physically-correct driving behaviors, we use statistical
methods (i.e., average, percentage) to test the effectiveness during
the entire driving segment rather than within each individual frame.

For physical tests, we record multiple videos using a tachograph
mounted on a vehicle at various realistic driving speeds. We place
a billboard alongside the road, and drive towards the billboard
straightly along the central of the road. We start recording at ap-
proximately 100 ft away from the billboard, and stop recording once
the vehicle passes the billboard. We perform multiple physical tests
under three different weather conditions including sunny, cloudy,
and dusk weather. The physical test is composed of the following
two phases:

• (1) Phase I: We use a white billboard with its four corners
painted as black and then use a golden billboard with four
blue corners. For each board, we record and drive along the
central of the road with a slow speed of 10mph in order to
capture sufficient frames (i.e., training videos).

• (2) Phase II: We send the input videos to our testing algorithm
to automatically generate the adversarial perturbation, which
will then be pasted on the billboard. We then drive by the
adversarial billboard with normal speed at 20 mph and record
the video (i.e., testing video). We calculate the average angle
error compared to the ground truth steering angle for every
frame of the video.

We note that strictly speaking, a real-world test would involve
actually autonomous vehicles driving by the billboard to observe
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the adversarial impact. Unfortunately, due to lacking actualy au-
tonomous vehicles, to validate DeepBillboard in real-world settings,
we took a similar approach applied in the following state-of-the-art
autonomous-driving research [29, 33, 39], which also has not in-
volved actual autonomous vehicles in the evaluation. Specifically,
we take videos with different driving patterns as inputs, which can
be as exhaustive as possible to cover all potential viewing angles at
different vehicle-to-billboard distances. In the physical-world eval-
uation, we tried to pre-record as many abnormally-driving videos
as possible to cover a majority of the possible misled driving sce-
narios of an actual autonomous vehicle. Such videos have been
applied in the adversarial construction/training phase. We show
such an abnormally-driving video in the following anonymous link:
https://github.com/deepbillboard/DeepBillboard. This video shows
that DeepBillboard is able to continuously deviate a car within each
frame. This would mimic one of the many actual autonomous driving
scenarios where the vehicle is continuously misled by DeepBillboard
at each frame (i.e., the misled angle within each frame is similar to
the one shown in this video).

4.2 Digital Perturbation Results
The results of digital perturbations are shown in Table 2, where
each column represents a specific scene, and each row represents a
specific steering model. Every image in a cell shows a representative
frame that has the median steering angle divergence. For example,
the image in cell (Dave_V1, Udacity_Scene1) represent the image
in Udacity dataset Scene1 has the Average Angle Error among all
frames in the same scene when predicted by Dave_V1 steering
model. Two arrows show the steering angle decision divergence
in each image, where the blue one is the ground truth and the red
one is the steering angle of the generated adversarial examples. We
observe that in all scenes, DeepBillboard makes all steering models
generate observable average steering angle divergences. Specifically,
DeepBillboard misleads the Dave_V1 model by more than 10◦ in 6
out of 7 scenes, except for Kitti_Straight1 in which the billboard oc-
cupies a small space. Dave_V2 incurs the largest average divergence
– more than 16.7◦ among all scenes. The test cases of Dave_V2
model show that even with underfitted model, DeepBillboard can
still greedily enlarge such divergence. DeepBillboard causes the
smallest divergence for the Dave_V3 model – 0.44◦ − 25.01◦. The
reason is because Dave_V3 introduces three dropout layers between
four fully connected layer, and use augmented training data, which
both contribute to the enhanced robustness and generalization of
the trained model. Particularly, the adoption of dropout layer which
randomly deactivates half of the neurons, can cause part of the pertur-
bations on billboards being deactivated, thus reducing the efficacy of
adversarial perturbations. We note that the Epoch model also adopts
dropout layers, so its average angle error is also small compared
to Dave_V1 and Dave_V2 in all scenes. However, Epoch does not
apply the training data augmentation used by Dave_V3 which crops
the images to train only the road pavement, thus the perturbations on
the roadside billboard has more influence to the prediction compared
to Dave_V3, resulting in a larger average angle error.

We further show the results on steering angle error along the
timeline for each studied scene, from the first frame to the last
frame where the billboard size increases monotonically among these
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Figure 4: Convergence of AAE w.r.t different parameters.

frames. The results are shown in Fig. 3, where each sub-figure in-
dicates a specific scene, the x-axis is the indexes of images along
the timeline, and the y-axis is the steering angle error (◦). We ob-
serve that in most scenes the steering angle errors increase when the
billboard size increases, as indicated by the Dave_V1 lines shown
in Fig. 3 (d), (e), (f), (g). The reason behind is intuitive – larger
billboards in images may activate stronger perturbations. On the
contrary, certain lines do not follow this trend, as indicated by Fig. 3
(a), (b), (c). For example, in Fig. 3 (b), frames in the middle con-
tribute more steering angle errors for the Dave_V1 model. We learn
that in such scenarios, even though the billboard is quite small in
the image, it can still lead to large steering angle divergence when
applying adversarial perturbations, indicating the test effectiveness
and robustness of DeepBillboard.

4.3 Parameter Tuning
In this set of experiments, we show that how parameter tuning may
affect the AAE–average angle error. Fig. 4 shows the convergence
trend when applying different parameters. The x-axis is the enhanced
iteration, y-axis is AAE, and the lines represent different parame-
ter settings. For example, line y indicates that the iterations begin
with initializing the billboard as yellow, y(5) indicates setting the
batch size as 5. Similar settings apply to y(10), and д indicates an
initialized green billboard. Line y(10, sum) indicates that besides
using batch size 10, it also uses sum to update gradient, instead of
the default max pooling. We observe from Fig. 4(a) that starting
iterations from yellow is overall better than starting from green in
this example. Additionally, we observe that two lines behave much
better than other lines – y(5, max) and y(10, sum). To further explore
the tradeoff of batch size and sum/max method, we conduct another
set of experiments which iterate up to 1000 iterations, whose re-
sults are shown in Fig. 4(b). We observe that, two lines representing
y(5,max ) and y(10, sum) outperform the other two lines. What we
learn from these two figures are: (1) carefully choosing the initial
color of the billboard can efficiently increase the converge speed and
yield a better results; and (2) there is no clear indications showing
there exists a better parameter choice between choosing a large or
small batch, and choosing max or sum to update gradient.

To figure out how the training set affects the convergence and the
objective, we use the same initial color, batch size and overlapping
handling (y(5,max )) for different subsets among the total 80 frames
in Udacity_Curve1. The results are shown in Fig. 5, where four sub-
figures represent (a) the first 40 frames, (b) the last 40 frames, (c)
the 40 frames with even indexes, and (d) all 80 frames, respectively.
Lines in each sub-figure represent different k values to be updated.
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Figure 5: Converge over iterations with different parameter
tunings: (a) first 40 frames; (b) 40 frames in the middle; (c) in-
terleaving half frames; (d) all frames.
We observe that all lines ascend fast at early iterations, and the
increase rates drop after around 400 iterations. The lines in Fig. 5
(a) converge to a lower AAE compared to lines in the other three
sub-figures. Lines using the last 40 frames clearly achieve better
results. From this observation, we learn that the chosen training
set does affect the final objective in the sense that images with
larger billboards can achieve better results. Additionally, a larger k
value usually achieves better results and faster convergence in most
scenarios except for Fig. 5 (a). The reason is that in this specific
scenario, the billboard occupies a rather small number of pixels.
Thus, aggressively increasing the number of updated pixels would
cause severe interferences among frames, thus leading to lower AAE.
From the parameter tuning experiments, we learn that choosing
images with larger billboard space, aggressively updating more
pixels, would result in faster convergence and better results.

4.4 Physical Case Study
As described in Section 4.1, our physical case study is composed
of two phases. Specifically, for both training and testing videos, we
start recording at 100 ft far away and stop recording when the vehicle
physically passes the billboard. The driving speed is set to be 10mph
for training videos in order to capture sufficient images, and the
speed for the testing video is 20mph to reflect ordinary on-campus
driving. We perform our physical tests on a straight lane without
curves under three different weather conditions including sunny,
cloudy, and dusk weather. To make the training robust, we record
three training videos through three slightly different routes: central,
left-shifting, and right-shifting. The billboard used in our experiment
has a size of 6′ × 4′. We adopt Dave_V 1 as the steering model due
to its proved efficacy in various real-world driving tests [4, 23, 24].

We define Exp_AAE to indicate the expected average angle error
according to the training videos, which is the M0 metric defined
in Section 3.2 based on digital perturbations. We use Test_AAE to
indicate the actual average angle error for all images in the testing

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0  20  40  60  80  100  120

A
n

g
le

 E
rr

o
r

Frame Index

Ad_left Ad_right

Figure 6: Per-frame steering angle error.

video, which is the M0 metric defined in Section 3.2 for physical
perturbations. We also record the M1 metric defined in Section 3.2
for the test video. We set the steering angle error threshold to 19.8◦
since when the driving speed is 20mph, such mis-steering would
cause at least an off-track distance of one meter within a time in-
terval of 0.33 second (duration of 10 frames for a 30 FPS camera),
which is large enough for causing dangerous driving behaviors as
demonstrated by NVIDIA Dave [4].

We note that our chosen evaluation metrics using average angle
error and percentage of large angle error can reasonably reflect
the overall possibility and strength of misleading for consecutive
frames. In the physical experiment, we calculate the angle error
threshold according to the speed, which can cause at least one-meter
off-tracking (defined as dangerous driving behaviors by NVIDIA).

The visible results are shown in Table 3, where each row shows
a sunny scene of a testing video, including one video with empty
billboard and two videos with adversarial billboards. The second
column shows the printable perturbations. Columns 3-6 present
different distances between the vehicle and the billboard. We observe
that, with white billboard, the steering angles are almost straight in
all distances. With the first (bright) adversarial billboard, the steering
angles turn left to a certain degree; on the contrary, the second (dark)
adversarial billboard leads steering to the right. As mentioned in
Sec. 3.4, this is controlled by setting gradient flag(+/-).

The values of test effectiveness are shown in Table 4, where
three rows show our experiments under three weather/lighting con-
ditions – sunny, cloudy, and dusk weather. The values in this table
reflect steering angle compared to the baseline steering without
perturbation. Under each condition, the table shows the three afore-
mentioned metrics for two adversarial settings (i.e., left-misleading
(right-misleading) denoted by the “Ad_left” (“Ad_right”) column).
We use two adversarial direction settings (mis-steering to the left or
right) to show that DeepBillboard can actually control the desired
misleading direction. We observe that two adversarial perturbations
both yield relatively large Exp_AAE (denoted by “Exp” in the table)
and Test_AAE (denoted by “Test”) for all weather conditions. For
instance, DeepBillboard yields a left mis-leading steering angle of
8.88 degree for sunny weather. In many cases, the Test_AAE value
is only slightly smaller than Exp_AAE, indicating DeepBillboard’s
efficacy in physical world settings. The percentage of frames having
a mis-steering angle larger than the pre-defined threshold (i.e., M1)
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Table 3: Illustration of physical billboard perturbation.
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Table 4: Test effectiveness of physical case study

Cond.
Ad_left Ad_right

Exp Test M1 Exp Test M1
Sunny 23.34 8.88 32% -20.09 -15.49 19%
Dusk 42.27 26.44 100% -26.54 -8.45 0
Cloudy 9.66 4.86 0 -20.4 -11.37 26%

is more than 19% in most scenarios (4 out of 6) and can even reach
up to 100%. Overall, we detected 268 frames out of 900 frames that
exhibit a mis-steering angle larger than the safety threshold.

To better interpret the results, we also report the per-frame steering
angle for the physical tests under the Sunny condition in Fig. 6
(due to space constraints, we omit the other two scenarios which
show similar result trends), where the x-axis represents the frame
index, and the y-axis represents the steering angle. We note again
that a positive (negative) steering angle value indicates a left (right)
steering. The two curves indicated in this figure represent the testings
of applying two adversarial billboards (left-misleading and right-
misleading). Both two tests are clearly effective. This trend becomes
mores observable at later frames, since the billboard occupies larger
space in the corresponding frame.

5 CONCLUSION
In this paper, we propose DeepBillboard, a systematic physical-
world testing of autonomous driving systems. DeepBillboard devel-
ops robust joint optimization to systematically generate adversarial
perturbation that can be patched on roadside billboards to consis-
tently cause mis-steering in a scene of multiple frames with different
viewing distances and angles. Extensive experiments demonstrate
the efficacy of DeepBillboard in testing various steering models in
different digital and physical-world scenarios. We believe that the
basic DeepBillboard approach can be generalized to a variety of
other physical entities/surfaces besides billboards along the curbside,
e.g., a graffiti painted on a wall.
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