
Automatic Layout Generation with Applications in
Machine Learning Engine Evaluation

Haoyu Yang∗, Wen Chen∗, Piyush Pathak†, Frank Gennari†, Ya-Chieh Lai†, Bei Yu∗
∗The Chinese University of Hong Kong

†Cadence Design Systems, Inc.
Email: {hyyang,byu}@cse.cuhk.edu.hk

Abstract—Machine learning-based lithography hotspot de-
tection has been deeply studied recently, from varies feature
extraction techniques to efficient learning models. It has been
observed that such machine learning-based frameworks are
providing satisfactory metal layer hotspot prediction results
on known public metal layer benchmarks. In this work, we
seek to evaluate how these machine learning-based hotspot
detectors generalize to complicated patterns. We first introduce
a automatic layout generation tool that can synthesize varies
layout patterns given a set of design rules. The tool currently
supports both metal layer and via layer generation. As a
case study, we conduct hotspot detection on the generated
via layer layouts with representative machine learning-based
hotspot detectors, which shows that continuous study on model
robustness and generality is necessary to prototype and inte-
grate the learning engines in DFM flows. The source code of
the layout generation tool will be available at https://github.
com/phdyang007/layout-generation.

I. INTRODUCTION

The rapid development of machine learning techniques
have brought promising alternatives to design for manufac-
turability problems, especially for lithography hotspot detec-
tion. Related researches range from varies feature extraction
techniques [1]–[7] and efficient learning models [1], [8]–[13].
Most of these frameworks are presenting very high hotspot
detection accuracy with reasonable false positive overhead.
However, most of them are targeting at a public benchmark
at legacy technology node from ICCAD2012 CAD Contest
[14], with carefully designed and tuned parameters and
machine learning engines.

In this paper, we seek to evaluate how these machine
learning-based hotspot detectors generalize to complicated
patterns. We first introduce an automatic layout generation
tool that can synthesize various layout patterns given a
set of design rules. Unlike the existing pattern generation
solutions that seek to increase the pattern space within
a constrained Euclidean distance [15], [16], the proposed
automatic generation flow generates patterns for certain DRC
constrained designs.

The tool supports both metal layer and via layer gener-
ation. In the configuration files, we can manually achieve
certain layout properties including tip to tip distance, wire
CD, layout density, via density and so on. These configu-
rations enable a generation of diverse layout patterns under

(a) Low via density (b) High via density

Fig. 1 Visualization of generated via patterns. Vias are
randomly placed at the intersection region of given upper
and lower metal shapes with a predetermined probability that
controls via density.

a given technology node, which can be applied to various
DFM research and analysis including hotspot detection and
OPC recipe development. An examples of via layers with
different density can be found in Fig. 1, where the upper and
the lower metal gratings are intentionally placed to assist via
generation.

As a case study, we conduct hotspot detection on the gen-
erated via layer layouts with representative machine learning-
based hotspot detectors [1], [8], [10], which adopt smooth-
boosting [1], shallow convolutional neural networks [8],
[10], respectively. Although these hotspot detectors achieve
promising results on ICCAD2012 CAD contest benchmarks,
we show performance degradation occurs with complex
dataset, which implies continuous study on model robustness
and generality is necessary to prototype and integrate the
learning engines in DFM flows. The contributions of this
paper are listed below.

• We develop a layout generation toolkit with Python and
KLayout [17] backbones, to support efficient unidirec-
tional metal layer and via/contact generation.

• We feed the generated via layers into a commercial
lithography simulator and construct a via layer hotspot
benchmark suit for hotspot detector evaluation.

• Evaluation experiments show that representative hotspot
detectors may fail to exhibit a satisfactory detection
performance on either accuracy or false positive penalty.

The rest of the paper is organized as follows. Section II978-1-7281-5758-0/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:25:49 UTC from IEEE Xplore. Restrictions apply.

describes details of the layout generation flow. Section III
presents a case study of state-of-the-art hotspot detector
evaluation, followed by conclusion in Section IV.

II. A LAYOUT GENERATION TOOLKIT

In this section, we will introduce the details of our layout
generation flow with Python and KLayout backbones. In
current version, we support unidirectional metal layer and
via/contact generation.

A. Metal Generation

The layout generation tool generates metal layers cell
by cell where metal shape distribution and placement are
controlled by a set of design constraints as listed below.

- wire_cd (w). The critical dimension of metal wire
shapes, defined by wire width.

- track_pitch (p). The distance between adjacent
wire tracks.

- min_t2t (t1). The minimum line-end to line-end dis-
tance in each wire track.

- max_t2t (t2). The maximum line-end to line-end
distance in each wire track.

- min_length (l1). The minimum length of a single
wire shape along the wire tracks.

- max_length (l2). The maximum length of a single
wire shape along the wire tracks.

- t2t_grid (tg). The unit size of line-end to line-end
distance.

- total_x (xt). The cell bounding box size in x direc-
tion.

- total_y (yt). The cell bounding box size in y direc-
tion.

To make a better understanding of these concepts, we also
visualize certain terminologies in Fig. 2. It can be seen that
min_t2t, max_t2t, min_length, and max_length
make key contributions to metal distribution and density.

Metal shapes are generated track-by-track and each track
is filled as described in Algorithm 1. We draw shapes from
an initial lower-left coordinate (x, y) (line 2), which will
be increased until x reaches the total cell size constraint xt
during the generation procedure (line 3); the wire length is
determined by a random number between l1 and max(xt −
x, l2) that ensures the shape length will never exceed the
cell size (line 4); we then draw a rectangle defined by the
lower-left and upper-right coordinates (lines 5 – 6); spacing
between adjacent shapes on single track is generated by line-
end to line-end constraints t1 and t2 (line 7) followed by the
update of start coordinates (line 8). The entire cell is filled
track-by-track that can be totally in parallel as different tracks
are generated independently, as in Algorithm 2.

B. Via Generation

Vias, as conductive connections between different metal
layers, are most likely to occur at regions where metals in
adjacent layers are overlapped in the plane. The basic idea
of via generation is creating candidate via locations with

line-end to line-end distance

track pitch

wire CD

wire length

track 1

track 2

track 3

Fig. 2 Visualization of terminologies in metal generation
constraints.

Algorithm 1 On Track Wire Generation

1: function DrawWire(w, t1, t2, tg , l1, l2, xt, xo, yo)
2: Initialize parameters x, y ← 0;
3: while x < xt do
4: l← rand(l1,max(l2, xt − x));
5: xll ← x + xo, yll ← y + yo, xur ← x + l +
xo, yur ← y + w + yo;

6: Draw a rectangle defined by xll, yll, xur and yur;
7: t← rand(t1,min(t2, x− xur), tg);
8: x← x+ l + t;
9: end while

10: end function

Algorithm 2 Wire Cell Generation

1: function DrawWireCell(w, p, t1, t2, tg , l1, l2, xt, yt,
xo, yo)

2: Initialize parameters y ← 0;
3: while y < yt do
4: DrawWire(w, t1, t2, tg , l1, l2, xt, xo, y);
5: y ← yo + p+ w;
6: end while
7: return Cell;
8: end function

horizontal and vertical metal shapes that can be generated
with Algorithm 1. Thus, we have additional via constraints
besides those control wire shape generation.

- via_x (vx). Via size along x direction.
- via_y (vy). Via size along y direction.
- density (ρ). The probability of a via appearing at a

candidate via location.
- enclosure_x (ex). The minimum horizontal distance

from a via to metal line-end.
- enclosure_y (ey). The minimum horizontal distance

from a via to metal line-end.
- via_pitch_x (vpx). The minimum center-to-center

distance of two vias in the same tract in x direction.
- via_pitch_x (vpy). The minimum center-to-center

distance of two vias in the same tract in y direction.
where via_x and via_y are directly satisfied by control-
ling wire_cds of two metal layers, density contributes

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:25:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I Metal layer generation specs (µm).
cellname wire cd track pitch min t2t max t2t min length max length t2t grid total x total y

test1 0.016 0.032 0.012 0.2 0.044 0.1 0.005 100 100
test2 0.016 0.032 0.012 0.2 0.044 0.1 0.012 100 100
test3 0.016 0.032 0.012 0.4 0.044 0.5 0.005 100 100
test4 0.016 0.032 0.012 0.4 0.044 0.5 0.012 100 100
test5 0.016 0.032 0.012 0.6 0.044 0.5 0.036 100 100
test6 0.016 0.032 0.012 0.6 0.044 0.5 0.072 100 100

to a threshold whether we should place a via at a candidate
via location. Challenging problem comes with satisfying
enclosure and pitch constraints.

We propose the concept of assist wire generation that
generates on track wire shapes with line-ends shortened by
the enclosure distance. As shown in Fig. 3, we generate via
candidate locations by taking the intersection between the
assist layer and M2 layer, instead of directly calculate the
intersection between M1 and M2. With the help of assist
wire, we can direclty filter out vias that violate enclosure
constraints by checking the area of them. In real cases, en-
closure constraints are applicable to both x and y directions,
which can be solved by simply using assist wires in vertical
tracks.

To deal with the pitch constraints, we create a via can-
didate matrix for each cell, with each entry representing a
cross point between a horizontal and a vertical tracks. We put
one at entries where there are metal shapes overlapping with
each other and leave other entries zero. The via candidate
matrix for the cell in Fig. 3 can then be written as follows.

Mvc =

0 1 1
0 1 1
0 0 1

 . (1)

After removing enclosure violations, the matrix becomes

Mvc =

0 1 0
0 1 0
0 0 1

 . (2)

Because the metal pitch is intentionally picked the same as
via during metal layer generation, the problem of finding via

pitch violations becomes finding
[
1 1

]
or
[
1
1

]
patterns in

Mvc. Finally, via pitch violations can be easily removed.
To summary, the via generation can be done with Al-

gorithm 3, where we first generate metal layers that are
to be connected by vias (lines 1–2); candidate via shapes
are placed by taking the intersection of two metal layers
along with the calculation of via candidate matrix (line 3);
following steps are removing enclosure conflicts (line 4),
pitch_x conflicts (lines 5–10) and pitch_y conflicts
(lines 11–16).

C. Layout Generation Performance

We evalutate the performance of the proposed layout
generation tool on an Intel Xeon 3.5GHz platform with single
thread. We adopt the specs in TABLE I and TABLE II
for metal and via layer generation, respectively, with each

Algorithm 3 Via Generation

Require: M1 specs, M2 specs, vx, vy , ex, ey , vpx, vpy .
Ensure: Via cell.

1: C1 ← Call DrawWireCell with M1 specs;
2: C2 ← Call DrawWireCell with M2 specs;
3: Mvc ← calculate via candidate matrix by taking C1 AND
C2 and insert via shapes;

4: Mvc ← Detect enclosure conflicts and remove conflict
vias;

5: for each Mvc(i, j) do
6: if Mvc(i, j) = 1 and Mvc(i− 1, j) = 1 then
7: Delete via cooresponding to Mvc(i, j);
8: Mvc(i, j)← 0;
9: end if

10: end for
11: for each Mvc(i, j) do
12: if Mvc(i, j) = 1 and Mvc(i, j − 1) = 1 then
13: Delete via cooresponding to Mvc(i, j);
14: Mvc(i, j)← 0;
15: end if
16: end for

track 1

track 2

track 3

M1

M2

Via Candidate

Assist Wire

track 1 track 2 track 3

Fig. 3 Satisfying enclosure constraints with assist wires.

test cell has an area of 0.001mm2. The throughputs are
dipicted in Fig. 4 that corresponds to the area of metel/via
cell generated per second.

III. EVALUATION OF REPRESENTATIVE HOTSPOT
DETECTORS

As a case study, we generate a group of via patterns with
above via generation flow and obtain clip labels by feeding
them into an industrial DRC and simulation tool. In this
section, we will use the generated dataset to evaluate the
performance of different loss functions on several represen-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:25:49 UTC from IEEE Xplore. Restrictions apply.

TABLE II Via layer generation specs (µm).
cellname via1 x via1 y m1 enc m2 enc min via1 pitch x via fraction min via1 pitch y total x total y

test1 0.07 0.07 0.02 0.02 0.14 0.1 0.14 100 100
test2 0.07 0.07 0.02 0.02 0.14 0.2 0.14 100 100
test3 0.07 0.07 0.02 0.02 0.14 0.3 0.14 100 100
test4 0.07 0.07 0.02 0.02 0.14 0.4 0.14 100 100
test5 0.07 0.07 0.02 0.02 0.14 0.5 0.14 100 100
test6 0.07 0.07 0.02 0.02 0.14 0.6 0.14 100 100

Metal Via
0

200

400

600

800
625

403

T
hr

ou
gh

pu
t

Fig. 4 Throughput (µm2 / s) estimation of the layout gener-
ation tool.

TABLE III Neural Network Configuration.
Layer Kernel Size Stride Output Node #

conv1-1 3 1 12× 12× 16
conv1-2 3 1 12× 12× 16

maxpooling1 2 2 6× 6× 16

conv2-1 3 1 6× 6× 32
conv2-2 3 1 6× 6× 32

maxpooling2 2 2 3× 3× 32

fc1 - - 250
fc2 - - 2

tative machine learning-based hotspot detectors [1], [8], [10].
We first introduce beneath ideas of these hotspot detectors.

A. Feature Tensor Extraction and Batch Biased Learning
(BBL) [8]

Layout hotspot detection, originally, can be regarded as
an image classification problem. However, the input size is
much larger than images in traditional classification tasks
because a large area of layout context is required to determine
whether a clip contains hotspot or not. [8] tackles the
problem with a layout compression technique in frequency
domain that dramatically reduces input size as well as
preserve a large fraction of original layout information. The
compression is conducted following four steps including (1)
layout slicing based on critical dimension (2) DCT on sub
clip blocks (3) flatten DCT coefficients in zig-zag form and
(4) discarding high frequency components and constructing
feature tensor. Additionally, the compressed data can be
easily learned with shallow neural networks. As a case study,
we will use the architecture specified in TABLE III in all the
deep learning related experiments.

In the procedure of training a hotspot detector, neuron
weights are updated towards pattern labels. [8] takes advan-
tage of the fact that any non-hotspot instances with predicted

non-hotspot probability over 50% will be correctly classified.
Therefore, it is not necessary to guide the neural networks
to learn a high confidence prediction. Accordingly, a batch
biased learning is proposed to introduce label penalty on non-
hotspot patterns based on their training loss on current step
which in turn controls the training label penalty.

B. Smooth Boosting [1]

[1] provides a legacy machine learning solution for
hotspot detection which includes feature engineering and
learning engine development. In the feature extraction stage,
[1] improves traditional concentric circle area sampling
(CCAS) [3] with mutual information, which considers that
only partial of sampled circles have strong contributions to
final feature vectors and labels. Circle selection problem can
be formulated as follows.

I∗nc
= arg min

Inc⊆I

∑
i∈Inc

I(Ci;Y), (3a)

s.t. |i− j|> d,∀i, j ∈ Inc , (3b)

where I∗nc
includes selected circle indices, I = {i|1 < i <

rmax, i ∈ N} contains indices of all circle candidates and

I(Ci;Y) =
∑
ci∈Ci

∑
y∈Y

p(ci, y) log
p(ci, y)

p(ci)p(y)
, (4)

which calculates the mutual information of ith circle and
labels. Here Cis and Y are random variables defined in circle
index space and label space.

Smooth Boosting [18], as an ensemble learning engine
with good noise tolerance, is chosen as the preferred model
here for hotspot detection tasks, where the weight of each
weak classifier is updated during training such that each weak
classifier satisfies Equation (5).

1

2

n∑
j=1

Mt(j) |ht (xj)− yj | ≤
1

2
− γ, (5)

where Mt(j)s are weight terms, hts are hypothesis function
of each weak classifier and γ is a hyper-parameter defined
in [18].

In the inference stage, all weak learners will work together
to predict the label of input clips with their weighted output
being the final classification results, as in Equation (6).

f = sign

(
1

T

T∑
t=1

ht

)
. (6)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:25:49 UTC from IEEE Xplore. Restrictions apply.

C. LithoROC [10]
Receiver operating characteristic (ROC) has be widely

used as a machine learning model evaluation metric. Given
a dataset D = {(xi, yi)}Ni=1, where xi ∈ Rd and yi ∈
{−1,+1} are the i-th data sample in the feature space and
its true class label, we can divide the dataset into a positive
sample set D+ = {(x+

i ,+1}N+

i=1 and a negative sample
set D− = {(x−i ,−1}N−

i=1, where N+ and N− denote the
number of positive and negative samples respectively, and
N = N+ +N−. Let f(x) denote the prediction model.

Based on the equivalence of area under the ROC
curve(AUC) and Wilcoxon-Mann-Whitney (WMW) statistic
test of ranks, pairwise convex surrogate loss Φ(f(x+

i) −
f(x−j)) is applied to make the AUC differentiable. The
original AUC function is defined as following:

AUC =
1

N+N−

N+∑
i=1

N−∑
j=1

I(f(x+
i)− f(x−j)), (7)

where I((f(x+
i) − f(x−j))) is the discontinuous indicator

function. The differentiable form is shown below to work as
the loss function.

LΦ(f) =
1

N+N−

N+∑
i=1

N−∑
j=1

Φ(f(x+
i)− f(x−j)). (8)

Then maximizing the AUC score is equivalent to minimizing
the loss function LΦ(f). Let z = f(x+

i) − f(x−j), [10]
recommend four surrogate loss functions for differentiable
AUC approximation: the pairwise squared loss (PSL) [19],
the pairwise hinge loss (PHL) [20], the pairwise logistic loss
(PLL) [21], and the R loss function [22] as shown below.

ΦPSL(z) = (1− z)2, (9)
ΦPHL(z) = max(1− z, 0), (10)
ΦPLL(z) = log(1 + exp(−βz)), (11)

ΦR(z) =

{
(−(z − γ))p, if z > γ,

0, otherwise.
(12)

It should also be noted that in R loss function we have 0 <
γ < 1 and p > 1. Additionally, we heuristically define two
new cubic loss functions (Pairwise Cubic Loss Function1 and
Pairwise Cubic Loss Function2) and test their performances
and compare with previous ones.

ΦPCL1(z) = max(8− (1 + z)3, 0), (13)

ΦPCL2(z) = max((1− z)3, 0). (14)

Fig. 5 illustrates the comparison of all surrogate loss
functions. Note that there is a sharp increase in penalty
when z goes to -1 in our cubic functions. The purpose is
to apply more penalty when false positive and false negative
simultaneously appear. As we can see from the curve of
PCL2, the penalty for z is highly to the original ones when
z ∈ [0, 1]. Furthermore, we can also clearly distinguish
larger penalty when any mis-prediction occurs (for curve
region [−1, 0]), which is expected to result in slightly better
performance.

−1 −0.5 0 0.5 1
0

2

4

6

8

z

Φ
(z

)

PCL1
PCL2
PSL
PHL
PLL

R

Fig. 5 Visualization of different approximations of AUC.

BBL

SMBoost
PHL

PLL
PSL R

0

25

50

75

100

A
cc

ur
ac

y
(%

)
(a) Accuracy

BBL

SMBoost
PHL

PLL
PSL R

0

25

50

75

100

Fa
ls

e
A

la
rm

R
at

e
(%

) Metal Via

(b) False Alarm

Fig. 6 Evaluation of machine learning-based hotspot detec-
tors.

D. Experiments

We implement these hotspot detection solutions with
Python and Tensorflow 1.9. All experiments are conducted
on a Intel platform with Titan Xp graphic unit. For the exper-
iments on BBL and SMBoost, we adopt the same parameter
settings as in [8] and [1] respectively. In the experiments on
LithoRoC, we explore the performances of [8] with surrogate
loss function suggested by [10] to seek for the increasing and
stabilizing the hotspot detection accuracy and minimizing
false alarms. In our experiment, we adopt the original unified
data from [8]. The detector is evaluated with γ = 1e − 3,
α = 0.65, m = 32 and k = 2000. We set β = 3 in PLL
loss function and γ = 0.7, p = 2 in R loss function. In each
iteration, m

2 hotspot and m
2 non-hotspot training instances

are randomly selected to perform weight updating. Learning
rate decays after every k iterations. During optimization, we
randomly select one between-class pair to calculate z. After
each iteration, a new batch is generated, so all between-class
pairs have equal probability to be fetched for optimization.
In the end, we use the last saved model to test prediction
performance, which is measured following previous works
[14].

Definition 1 (Accuracy (Acc)). The ratio between the num-
ber of correctly predicted hotspot clips and the number of
all real hotspot clips.

Definition 2 (False Alarm Rate (FA)). The ratio between
the number of correctly predict non-hotspot clips and the
number of all non-hotspot clips.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:25:49 UTC from IEEE Xplore. Restrictions apply.

TABLE IV CNN-based hotspot detectors behave unstably on challenging datasets.

ID PSL PHL PLL R PCL1 PCL2 BBL

Acc (%) FA (%) Acc (%) FA (%) Acc (%) FA (%) Acc (%) FA (%) Acc (%) FA (%) Acc (%) FA (%) Acc (%) FA (%)

1 10.7 0.96 94.17 60.95 87.87 43.79 10.82 1.92 81.33 36.36 24.14 2.82 58.74 24.50
2 17.48 2.5 79.31 38.28 53.26 16.90 30.56 7.81 83.59 39.37 86.09 44.69 62.78 23.43
3 17.6 3.26 93.34 59.54 33.17 6.59 17.95 2.11 40.07 8.77 85.25 40.90 60.64 22.92
4 20.81 4.23 38.76 7.94 28.18 4.99 30.92 7.11 92.39 51.34 72.53 27.66 65.40 31.37
5 18.67 3.07 17.36 1.66 64.09 22.86 15.57 1.86 85.49 39.88 46.25 11.46 58.26 24.71

Ave 17.05 2.80 64.59 33.67 53.31 19.03 21.16 4.16 76.57 35.14 62.85 25.51 61.16 25.39
Var 14.39 1.45 1204.02 780.35 586.94 246.03 83.02 9.13 433.51 249.92 727.40 330.40 8.78 11.74

To explore the robustness of the network, we perform
five parallel experiments and differentiate them with IDs, as
shown in the first column of TABLE IV. Adjacent columns
display detailed results with headers “PSL”, “PHL”, “PLL”
and “R”, which correspond to the AUC approximation func-
tion defined from Equation (9) to Equation (12) respectively.
Columns “Acc” and “FA” denote hotspot detection accuracy
and false alarm in the percentage form respectively. In the last
two rows, we compute the average and variance after Bessel’s
Correction for each column to estimate their performance and
stability. It can be seen that although these training solutions
behave reasonably good on some designs (see blue bars of
Fig. 6), they all fail on challenging datasets. Furthermore,
some of the existing solutions rely highly on the initial status
of the neural networks and hence yield unstable performance,
as listed in TABLE IV.

IV. CONCLUSION

In this paper, we propose a test layout generation toolkit
built upon KLayout backbone. The toolkit supports both
contact/via and uni-directional metal layer generation with
certain design rule configurations. The tool can also be
easily extended to other purposes including cell process-
ing, complicated test pattern generation (e.g. Hilbert space
patterns) and layout transformation. As a case study, we
generate a set of DRC-clean via layout clips to evalu-
ate the robustness and stability of state-of-the-art machine
learning-based hotspot detectors. Here we introduce three
recent hotspot detectors that adopt batch biased learning,
smooth boosting and AUC optimization respectively, which
all exhibit good performance on public metal layer design
but unstable on the generated via designs. The study shows
continuous research are necessary to increase the robustness
and stability of machine learning models and hence prototype
such frameworks into real back-end design flow.

ACKNOWLEDGMENTS

This work is supported in part by Cadence Design Sys-
tems, Inc. and The Research Grants Council of Hong Kong
SAR (Project No. CUHK24209017).

REFERENCES

[1] H. Zhang, B. Yu, and E. F. Y. Young, “Enabling online learning
in lithography hotspot detection with information-theoretic feature
optimization,” in Proc. ICCAD, 2016, pp. 47:1–47:8.

[2] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “Detecting multi-
layer layout hotspots with adaptive squish patterns,” in Proc. ASPDAC,
2019, pp. 299–304.

[3] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new lithography
hotspot detection framework based on AdaBoost classifier and simpli-
fied feature extraction,” in Proc. SPIE, vol. 9427, 2015.

[4] F. Yang, S. Sinha, C. C. Chiang, X. Zeng, and D. Zhou, “Improved
tangent space based distance metric for lithographic hotspot classifi-
cation,” IEEE TCAD, vol. 36, no. 9, pp. 1545–1556, 2017.

[5] Y. Tomioka, T. Matsunawa, C. Kodama, and S. Nojima, “Lithography
hotspot detection by two-stage cascade classifier using histogram of
oriented light propagation,” in Proc. ASPDAC, 2017, pp. 81–86.

[6] H. Geng, H. Yang, B. Yu, X. Li, and X. Zeng, “Sparse VLSI layout
feature extraction: A dictionary learning approach,” in Proc. ISVLSI,
2018, pp. 488–493.

[7] H. Yang, Y. Lin, B. Yu, and E. F. Y. Young, “Lithography hotspot
detection: From shallow to deep learning,” in Proc. SOCC, 2017, pp.
233–238.

[8] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout
hotspot detection with feature tensor generation and deep biased
learning,” IEEE TCAD, vol. 38, no. 6, pp. 1175–1187, 2019.

[9] R. Chen, W. Zhong, H. Yang, H. Geng, X. Zeng, and B. Yu, “Faster
region-based hotspot detection,” in Proc. DAC, 2019, pp. 146:1–146:6.

[10] W. Ye, Y. Lin, M. Li, Q. Liu, and D. Z. Pan, “LithoROC: lithography
hotspot detection with explicit ROC optimization,” in Proc. ASPDAC,
2019, pp. 292–298.

[11] D. Ding, B. Yu, J. Ghosh, and D. Z. Pan, “EPIC: Efficient predic-
tion of IC manufacturing hotspots with a unified meta-classification
formulation,” in Proc. ASPDAC, 2012, pp. 263–270.

[12] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, “Imbalance aware
lithography hotspot detection: a deep learning approach,” JM3, vol. 16,
no. 3, p. 033504, 2017.

[13] M. Shin and J.-H. Lee, “Accurate lithography hotspot detection using
deep convolutional neural networks,” JM3, vol. 15, no. 4, p. 043507,
2016.

[14] A. J. Torres, “ICCAD-2012 CAD contest in fuzzy pattern matching
for physical verification and benchmark suite,” in Proc. ICCAD, 2012,
pp. 349–350.

[15] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “DeePattern: Lay-
out pattern generation with transforming convolutional auto-encoder,”
in Proc. DAC, 2019, pp. 148:1–148:6.

[16] S. Shim and Y. Shin, “Topology-oriented pattern extraction and
classification for synthesizing lithography test patterns,” JM3, vol. 14,
no. 1, pp. 013 503–013 503, 2015.

[17] “KLAYOUT,” https://www.klayout.de.
[18] R. A. Servedio, “Smooth boosting and learning with malicious noise,”

Journal of Machine Learning Research, vol. 4, no. Sep, pp. 633–648,
2003.

[19] W. Gao, R. Jin, S. Zhu, and Z.-H. Zhou, “One-pass auc optimization,”
in Proc. ICML, 2013, pp. 906–914.

[20] H. Steck, “Hinge rank loss and the area under the roc curve,” in
European Conference on Machine Learning. Springer, 2007, pp.
347–358.

[21] C. Rudin and R. E. Schapire, “Margin-based ranking and an equiva-
lence between adaboost and rankboost,” Journal of Machine Learning
Research, vol. 10, no. Oct, pp. 2193–2232, 2009.

[22] L. Yan, R. H. Dodier, M. Mozer, and R. H. Wolniewicz, “Optimizing
classifier performance via an approximation to the wilcoxon-mann-
whitney statistic,” in Proc. ICML, 2003, pp. 848–855.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:25:49 UTC from IEEE Xplore. Restrictions apply.

