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ABSTRACT

Design-process weakpoints also known as hotspots cause systematic yield loss in semiconductor manufacturing.
One of the main goals of DFM is to detect such hotspots. For the application of AI in hotspot detection, a variety
of machine learning-based techniques have been proposed as an alternative to time expensive process simulations.
Related research works range from finding efficient layout representations and features and developing reliable
machine learning models. Main stream layout representations include density-based feature, pixel-based feature,
frequency domain feature, concentric circle sampling (CCS) and squish pattern. However most of them are either
suffering from information loss (e.g. density-based feature, and CCS), or not storage efficient (e.g. images). To
address these problems, we propose a convolutional neural network called Squish-Net where the input pattern
representation is in an adaptive squish form. Here, the squish pattern representation is modified to handle
variations in the topological complexity across a pattern catalog, which still allows no information loss and high
data compression. We show that different labeling strategies and pattern radius contribute to the trade-offs
between prediction accuracy and model precision. Two imbalance-aware training strategies are also discussed
with supporting experiments.

1. INTRODUCTION

Design-process weakpoints also known as hotspots cause systematic yield loss in semiconductor manufacturing.1,2

One of the main goals of DFM is to detect such hotspots. For the application of AI in hotspot detection, a variety
of machine learning-based techniques have been proposed as an alternative to time expensive process simulations.

Although machine learning has brought evolutionary benefits of computer vision tasks, such techniques cannot
directly applied here due to the speciality of layout design and sign-off flows. Recent researches seek to embed
machine learning techniques to complicated DFM flows. [3, 4] adopt regular convolutional neural networks for
layout hotspot detection tasks which take layout images as input and consider greedy solutions regarding the
imbalanced training set problem. [5] formulates a machine learning model that can be used to predict edge
displacements in model-based OPC, which reduces optimization runtime by a significant amount. [6] argues that
pooling layers in traditional CNNs drop important information of layout context and proposes to replace the
pooling layers with strided convolution layers, which achieves better hotspot predicition accuracy. [7] studies the
effectiveness of generative machine learning models in mask optimization tasks, where an ILT-guided training
strategy is proposed to achieve better convergence and generated mask quality. [8] proposes another hotspot
detection framework, where layout clips are compressed in frequency domain with minor information loss. The
compressed data packet format is naturally compatible with deep neural networks. A batch-biased learning
algorithm is developed along with shallow CNNs to achieve satisfactory trade-off between prediction accuracy
and false alarms. Very recently, [9] proposes an adaptive squish representation that makes the multilayer hotspot
detection tasks easier.

Specifically, machine learning-based hotspot detection researches focus on finding efficient layout represen-
tations and features3,5, 8, 10,11 and developing reliable machine learning models.3,8, 10,12,13 Main stream layout
representations include density-based feature,10 pixel-based feature,3,4 frequency domain feature,8,14 concentric
circle sampling (CCS)12 and squish pattern.11 However, most of them are more or less suffering from drawbacks.
Density-based features correspond to the ratio of geometry and spacing area which significantly drop shape
relations. Pixel-based features (i.e. raw images) are not computational friendly in terms of both training and
inferencing, and so are frequency domain features. Although CCS adopts mutual information for better feature
correlations, it still ignores large amount of context information. Squish pattern, on the other hand, is a scan
line-based layout representation, where a layout clip is cut into grids by scan lines that overlap with all shape
edges. However, squish pattern extraction are likely to result in different dimensionality which is not machine
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learning friendly. To address this problem, [9] proposes a novel adaptive squish pattern representation which
is modified to handle variations in the topological complexity across a pattern catalog.15 This representation
allows no information loss and high data compression.

Imbalanced dataset is a general problem of machine learning-based hotspot detectors which is discussed in
[3]. [3] proposes an upsampling approach that duplicates the minority class (i.e. hotspot) in the training set.
However such setting might significantly introduce over-fitting. In this paper, we discuss two efficient solutions
to reduce the side effect of the imbalanced problem as much as possible. One solution is called balanced batch
that forces the training batch to be balanced by sampling same amount instances from both class. The other
solution samples non-hotspot patterns according to their CCD and complexity score distribution, such that the
training set will be balanced before training stage starts. We will show two methods exhibit different trade-offs
on true positive and false positive rates.

Hotspot labeling is another problem when generating the training set. Previous frameworks are usually
evaluated on existing datasets with patterns being labeled as hotspots or non-hotspots.1,3, 6, 16–19 However,
pattern labeling is also critical in real backend design flows. Here we label a clip as hotspot or non-hotspot
according to the distance between the clip center and the location where real hotspot occurs. If the distance
is smaller than some threshold value, we will mark the clip as a hotspot and vice versa. It can be seen that a
smaller threshold comes with less noise but more serious imbalance problem and a larger threshold makes the
labels in the training set inaccurate.

The rest of the paper is organized as follows. Section 2 introduces basic terminologies related to machine
learning-based hotspot detection problem. Section 3 discusses the details of our Squish-Net framework. Section 4
shows experimental results followed by conclusion in Section 5.

2. PRELIMINARIES

In this section, we will introduce basic terminologies and concepts related to this work. We adopt the same
evaluation metrics as introduced in [1] which is defined based on the confusion matrix and applied in most recent
hotspot detection works.

Definition 1 (True Positive (TP)) The total number of correctly predicted hotspots is called TP. The ratio
between TP and total number of hotspots is defined as accuracy or recall.

Definition 2 (False Positive (FP)) The number of nonhotspot locations that are reported as hotspots by the
hotspot detector. False alarm rate is similarly defined by the ratio between FP and total number of nonhotspots.

In modern DFM flows, post-tapeout inspection overhead is almost strictly related to FPs, thus we also expect
most predicted positive samples are TPs. Such overhead is quantified as follows.

Definition 3 (Precision) The ratio between TP and total number of predicted positive samples.

Modified Squish Pattern

The classic squish pattern11 is a lossless layout representation that consists of layout topology and geometric
information.9 As shown in Figure 1, a layout design is converted into clips for pattern analysis. Each clip is
split into grids by a set of scan lines that cover all the shape edges. The topology of a given pattern can then
be defined by a matrix T that has the same dimension as the pattern grids. Two vectors δx and δy store the
grid size alone x-axis and y-axis respectively. We first show how T , δx and δy are embedded into a single tensor.
Here we expand δx and δy into the same dimensionality as T by tiling them vertically and horizontally.

T =




0 0 0 0
1 1 1 1
0 0 0 0
1 1 0 1
0 0 0 0
0 1 1 1
0 0 0 0




, δx tile =




75 13 78 83
75 13 78 83
75 13 78 83
75 13 78 83
75 13 78 83
75 13 78 83
75 13 78 83




, δy tile =




25 25 25 25
32 32 32 32
96 96 96 96
32 32 32 32
32 32 32 32
32 32 32 32
45 45 45 45




, (1)
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Figure 1: A simple pattern example with scan lines.

which can be stacked together as a 3-channel tensor and the second and the third channel store the grid size
at corresponding locations in x and y directions respectively. It can be observed that some δx tile and δy tile

will have large variations in their entries that might lead the gradient out of control during the neural network
training.

In [9], an adaptive squish pattern is proposed to effectively pad input tensors into any desired size while
reducing the variations of δx tiles and δy tiles. The basic idea is to introduce additional scan lines that can still
make the whole input tensor informative. Suppose T ∈ R7×4 is to be extended to R7×7. In this case, only x
direction needs to be processed. By the algorithm in [9], we are able to obtain the following adaptive squish
representation.

T a =




0 0 0 0 0 0 0
1 1 1 1 1 1 1
0 0 0 0 0 0 0
1 1 1 0 0 1 1
0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 0 0 0 0 0 0




,

δx a =
[
37.5 37.5 13 39 39 41.5 41.5

]
,

δy a =
[
25 32 96 32 32 32 45

]
.

3. THE METHODS

3.1 Training on the Imbalanced Dataset

3.1.1 Labeling Layout Patterns

After cataloging, a layout will be converted into a set of layout clips that contain patterns of interest. Defects
might occur anywhere within some clips. Here a problem comes out that whether a clip should be labeled as
hotspot as long as there are defects inside it. In most cases, lithography hotspots are not usually caused by the
pattern itself but also caused by a relatively larger context region surrounding it. Intuitively, it is risky to label
a clip as hotspot if defects are located near the boundary of the clip, because this clip misses lots of context
information that causes the defects. Labeling such clip as hotspot will inevitably induce noises during training.
Here we introduce center-to-center distance (dc2c) that will be used as the criteria when labeling clips, as shown
in Figure 2.

Definition 4 (Center-to-Center Distance) The smallest distance between the center of a clip and the center
of all the defects in the clip.

The label of a clip is determined accordingly by a center-to-center distance threshold tc2c. A clip is labeled as
hotspot if and only if dc2c ≤ tc2c.
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3.1.2 Imbalance-aware Training

In hotspot detection tasks, existing hotspot library is usually highly imbalanced with only a small fraction of
hotspot instances.3 We visualize the breakdown of hotspot and non-hotspot clip percentages in a 7nm metal
layer dataset, as in Figure 3, where “rxxx”s represent clip radius in nm and the percentages are calculated
when tc2c = 48nm. As can be seen that only less than 1% of clips are hotspot. [3] addresses this problem by
duplicating minority hotspot patterns in the training set and formulates a balanced pattern library. However,
such strategy creates lots of repeated hotspot patterns that might cause serious overfitting.

In this paper, we adopt two solutions to alleviate this problem. In the first solution, we sample out non-
hotspot clips from the training set such that instances in the training set are balanced for both categories.
Previous work has shown that layout follows a normal distribution in terms of the count of critical dimension
(CCD) scores.20 In the second solution, we conduct sampling before training starts. We sample out the same
amount of non-hotspot patterns as the number of hotspot patterns in the training set. The sampling procedure
also makes sure that the CCD scores in the reduced training set follow a unified distribution for a better training
behavior. We will show later in the experiments both solutions contribute to the imbalanced training set problem
and exhibit different trade-offs between TP and FP.

3.2 The Neural Network Architecture

The detailed network configurations are listed in Table 1. Column “Layer” lists layer types and ID. Columns
“Filter” and “Stride” define the size and the scan step of convolution and pooling layers. Column “Output”
lists the output dimensionality of current layer. [21] has shown that shortcut links between different convolution
layers allow gradients to be more easily backpropogated to early layers. In this paper, we intentionally add the
output of convi-1 and convi-4 together before going into next level convolution stages.

20nm

Defect Clip Center

(a) Hotspot

50nm

(b) Non-hotspot (c) Non-hotspot

Figure 2: An example of labeling clips, assuming tc2c = 48nm. The red dot indicates the center of a clip and
the cross markers are the locations where defects occur. If a defect occurs close to the clip center, we will label
it as hotspot.
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Figure 3: Breakdown of hotspot and non-hotspot clip percentages of different tc2cs.
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Table 1: Neural networks configuration details.

Layer Filter Stride Output Parameter

conv1-1 5×5×128 2 32×32×128 9600

conv1-2 5×5×128 1 32×32×128 409600

conv1-3 5×5×128 1 32×32×128 409600

conv1-4 5×5×128 1 32×32×128 409600

conv2-1 5×5×256 2 16×16×256 819200

conv2-2 5×5×256 1 16×16×256 1638400

conv2-3 5×5×256 1 16×16×256 1638400

conv2-4 5×5×256 1 16×16×256 1638400

conv3-1 5×5×512 2 8×8×512 3276800

conv3-2 5×5×512 1 8×8×512 6553600

conv3-3 5×5×512 1 8×8×512 6553600

conv3-4 5×5×512 1 8×8×512 6553600

conv4-1 5×5×1024 2 4×4×1024 13107200

fc1 - - 1024 16777216

fc2 - - 2 2048

Summary - - - 59796864

Table 2: Benchmark Statistics.

Radius (nm)
Train Test

Hotpot Non-Hotspot Hotspot Non-Hotspot

96 21688 3324144 1906 91387

112 32695 5746509 2435 136413

128 43756 7376706 2898 167887

4. EXPERIMENTAL RESULTS

4.1 Configurations and The Dataset

We implement our framework with Tensorflow library22 on a Intel platform with one Tesla P100 graphic
card. To verify the proposed framework, we adopt an industry 7nm metal layer layout. The benchmark details
are listed in Table 2, where column “Radius (nm)” indicates the clip size that used for pattern cataloging and
training set preparation and columns “Hotspot” and “Non-Hotspot” list the number of hotspot and non-hotspot
patterns in the dataset. Because we use same anchoring policy when extracting patterns, larger radius will
inevitably result in more pattern count and larger imbalanced ratio between hotspot and non-hotspot patterns.
It should be noted that all layout clips are with square shapes, therefore the radius here only represents the
vertical or horizontal distance from a clip center to the boundaries of the clip.

All neural network models are trained with a batch size of 64 at an initial learning rate of 0.001 that will be
decayed by 0.7 every 2000 iterations. We pick 10000 as the maximum number of iterations and the best models
are selected based on the cross-validation from 500 hotspot patterns that are never seen during training. All
neuron weights are initialized with Xavier initializer and all biases are set to zero before the training starts. We
also apply a L2 regularizer on all neuron weights in case of overfitting.

4.2 Study of C2C Threshold

In the first experiment, we will show that larger C2C thresholds induce additional noise when generating labels
of the training set. We list the hotspot prediction results in Table 3, where column “C2C (nm)” lists three
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Table 3: Experimental results on different C2C thresholds.

C2C (nm) method TPR FPR precision

28
balance 0.9903 0.0649 0.2414

sampling 0.9913 0.0979 0.1744

48
balance 0.9848 0.0734 0.2186

sampling 0.9916 0.1368 0.1313

96
balance 0.9676 0.1597 0.1550

sampling 0.9818 0.2157 0.1212

Table 4: Experimental results on different clip radius.

Radius (nm) method TPR FPR precision recall

96
balance 0.9848 0.0734 0.2186 0.9848

sampling 0.9916 0.1368 0.1313 0.9916

112
balance 0.9848 0.0603 0.2257 0.9848

sampling 0.9979 0.1032 0.1472 0.9979

128
balance 0.9806 0.0636 0.2102 0.9806

sampling 0.9959 0.2009 0.0788 0.9959

different C2C thresholds, column “method” includes the methods that used to handle the imbalanced training
set problem and columns “TPR”, “FPR” and “precision” list the model performance in terms of true positive
rate, false positive rate and the precision, respectively. Rows “balance” shows the hotspot detection results
with the first solution of the imbalance-aware training and “sampling” corresponds to the second solution, as
introduced in previous section. It can be seen from the table that the best detection performance comes with
the smallest C2C threshold with over 99% TPR and less than 10% FPR whichever imbalance-aware training
solution is used. As the C2C threshold increases, we will inevitably face more contaminated labels due to the
reason discussed in Section 3.1, which is also consistent with the prediction results here. It can also be seen that
the “balance” and “sampling” methods exhibit trade-offs between TPR and FPR, with the “sampling” method
achieving a relatively higher hotspot detection accuracy at the cost of higher FPR that also reflects lithography
simulation overhead in the layout physical verification flow.

4.3 Study of Clip Radius

In the second experiment, we train the neural networks with three different training sets, which are cataloged
from the same layout with same anchoring point. The only difference is the clip radius. In our experiments, we
have 3 radius settings ranging from 96nm to 128nm. Because the pattern clips in this work are all in square
shape, here the radius only refers to the distance between the clip center to clip edges. We list the experimental
results in Table 4, where column “Radius (nm)” corresponds to different clip radius when generating the training
set and columns “method”, “TPR”, “FPR”, “precision” and “recall” are defined exactly the same as in Table 3.
Theoretically, larger radius attains additional context information of a layout clip that is expected to achieve
better model generality and prediction accuracy, which holds when we extend the radius from 96nm to 112nm.
However, as can be seen in the table, when we continuously increase the radius to 128nm, slight performance
degradation can be observed. Such results can be explained by the fact that the imbalanced dataset problem is
getting worse with lager pattern radius, as listed in Table 2. Two imbalance-aware training solutions also follow
the same trend as discussed before, with the “balance” method attaining a higher precision.
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5. CONCLUSION

In this paper, we propose a deep learning-based hotspot detection framework where the input pattern is in an
adaptive squish form. We discuss and show that different layout pattern labeling strategies are associated with
trade-offs caused by the training set distribution and the noise information. We also study the effect of different
pattern radius and show that larger radius grants the machine learning model better context information in
the training phase while, however, inducing weaker training data distribution. Two training strategies are also
studied in this paper to address the imbalanced training set problem. Experiments are conducted on EUV-
specific 7nm metal layer design that show the potential of the emerging deep learning solutions on physical
verification tasks.
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