
Detecting Multi-Layer Layout Hotspots with
Adaptive Squish Patterns

Haoyu Yang
CSE Department, CUHK

hyyang@cse.cuhk.edu.hk

Piyush Pathak
Cadence Design Systems Inc.
ppathak@cadence.com

Frank Gennari
Cadence Design Systems Inc.
gennari@cadence.com

Ya-Chieh Lai
Cadence Design Systems Inc.
ylai@cadence.com

Bei Yu
CSE Department, CUHK

byu@cse.cuhk.edu.hk

ABSTRACT
Layout hotpot detection is one of the critical steps in modern inte-
grated circuit design flow. It aims to find potential weak points in
layouts before feeding them into manufacturing stage. Rapid devel-
opment of machine learning has made it a preferable alternative
of traditional hotspot detection solutions. Recent researches range
from layout feature extraction and learning model design. However,
only single layer layout hotspots are considered in state-of-the-art
hotspot detectors and certain defects such as metal-to-via failures
are not naturally supported. In this paper, we propose an adap-
tive squish representation for multilayer layouts, which is storage
efficient, lossless and compatible with deep neural networks. We
conduct experiments on 14nm industrial designs with a metal layer
and its two adjacent via layers that contain metal-to-via hotspots.
Results show that the adaptive squish representation can achieve
satisfactory hotspot detection accuracy by incorporating a medium-
sized convolutional neural networks.

1 INTRODUCTION
Layout hotpot detection is one of the critical steps in modern inte-
grated circuit design flow. It aims to find potential weak points in
layouts before feeding them into manufacturing stage. Classic so-
lutions include pattern matching, pattern simulation and machine
learning. Pattern matching locates potential hotspot regions by find-
ing same or similar patterns occurred in an existing hotspot pattern
library [1–3]. However, pattern matching methods rely highly on
the quality of the pattern library and will show weak performance
on unseen designs. Although pattern simulation can accurately
predict hotspot regions incorporating with proper models, it is
extremely computational costly.

Machine learning, as a rapid developing field, has shown its ad-
vantage on solving DFM problems [4–8]. Recent study of machine
learning on hotspot detection tasks cover layout feature represen-
tation [9–12] and learning model design [10–14]. Popular layout

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’19, January 21–24, 2019, Tokyo, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6007-4/19/01. . . $15.00
https://doi.org/10.1145/3287624.3288747

(a) (b)

Figure 1: 14nm design examples of (a) single metal layer and
(b) single metal layer with its upper and lower via.

representations include density-based feature [11], pixel-based fea-
ture [7, 12], frequency domain feature [10, 15], concentric circle
sampling (CCS) [13] and squish pattern [16]. Satisfactory hotspot
prediction results can be achieved incorporating with certain ma-
chine learning models such as support vector machine [17], boost-
ing [11, 13] and deep neural networks [7, 10, 12, 18]. However, all
of these machine learning-based hotspot detectors only consider
defects that could possibly occur in single metal layer, and cer-
tain hotspots like potential metal-to-via failures are not naturally
supported or discussed.

Multilayer patterns are much more complicated from geometric
point of view. As shown in Figure 1, via-introduced pattern vari-
ations make it more challenging when extracting layout features.
State-of-the-art layout representations are more or less exhibiting
minor drawbacks that might be amplified when applied in multi-
layer patterns. For example, density-based feature and CCS drop
the spatial information of layouts, frequency domain features are
computational costly if clip size is large and pixel-based representa-
tion is not storage friendly. Squish patterns, on the other hand, have
been widely used in DFM tasks like pattern matching and pattern
cataloging, benefiting from two good properties: (1) Squish patterns
are lossless representation and can be recovered to original layouts
exactly; (2) Squish patterns store layout topologies and geometry
information separately that make them storage efficient. However
such representation still violates the requirements of most machine
learning models, because squish patterns cannot guarantee a fixed
size for a given layout window. Additionally, patterns with low
complexity might have relatively larger geometry information per
unit topology grid, which induces training bias for the learning
models. Data preprocessing is usually applied to make the feature

https://doi.org/10.1145/3287624.3288747

value of each instance fall into same scale. An example is that color
images are usually subtracted by their mean pixel value of RGB
channels before feeding them into learning machines, which has
shown better model convergence and prediction performance [19].
Inspired by such observation, we propose an adaptive squish rep-
resentation that attains the properties of original squish patterns
and also ensures a fixed dimensionality for a given layout window
size. Additionally, adaptive squish patterns promise to have smaller
standard deviation in their geometric information that significantly
benefits learning models.

ResNet resolves the gradient vanishing problem by introducing
shortcut links between convolution stages in traditional convolu-
tional neural networks. It has shown great success in both classic
image classification tasks and DFM applications [20, 21]. In this
paper, we apply the adaptive squish patterns on a convolutional
neural network with ResNet blocks. The reduced neural network
architecture and efficient layout representation show significant
discriminate power on detecting multilayer hotspots. Rest of the
paper is organized as follows.

Section 2 introduces related concepts and terminologies, Sec-
tion 3 describes the details of our framework including the extrac-
tion of adaptive squish patterns and the neural network architecture,
Section 4 shows the experimental results and Section 5 concludes
this paper.

2 PRELIMINARIES
In this section, we will introduce basic terminologies and concepts
related to this work.

2.1 Evaluation Metrics
We adopt the same evaluation metrics as introduced in [22] which
is applied in most recent hotspot detection works.

Definition 1 (Hit). The total number of correctly predicted hotspots
is called hit. The ratio between hit and total number of hotspots is
defined as accuracy.

Definition 2 (False Alarm). The number of nonhotspot locations
that are reported as hotspots by the hotspot detector. We denote
the ratio between false alarm and total number of nonhotspots as
false alarm rate.

Definition 3 (Precision). The ratio between hit and total number
of predicted positive samples.

2.2 Squish Pattern
The classic squish pattern [16] is a lossless layout representation
that consists of layout topology and geometric information. As
shown in Figure 2, a clip of layout is split into grids using a set of
scan lines that cover all the shape edges. The topology of a given
pattern can then be defined by a matrixT that has the same dimen-
sion as the pattern grids. Each entry ofT ∈ Rnx×ny is determined
by Equation (1).

ti j =
n−1∑
l=0

αl · 2l , (1)

x0 x1 x3x2 x4
y0
y1

y3
y2

y4

y5

0.2 0.072 0.06 0.048

0.09

0.137

0.017
0.06
0.013

Figure 2: A simple multilayer pattern example with scan
lines.

where l is the layer id and αl indicates whether there are patterns
in the corresponding grid, as in Equation (2).

αl =

{
0, given grid contains spacing in layer l ,
1, given grid contains geometry in layer l .

(2)

We also need geometric information to define a pattern. Here we use
two vectors δx and δy to store the grid sizes in x and y directions,
respectively. Each entry of the two vectors is defined in Equation (3)
and Equation (4).

δx,i = xi − xi−1, i = 1, 2, ...,nx , (3)
δy,i = yi − yi−1, i = 1, 2, ...,ny , (4)

where xi s are the vertical scan line coordinates and yi s are hori-
zontal scan line coordinates. Therefore the pattern in Figure 2 can
be represented as follows.

T =

1 0 0 0
0 0 0 0
1 1 1 1
1 1 3 1
1 1 1 1

,

δx =
[
0.2 0.072 0.06 0.048

]
,

δy =
[
0.013 0.06 0.017 0.137 0.09

]
.

3 THE ALGORITHM
This section will discuss the development of adaptive squish pat-
terns and how them can be fed into convolutional neural networks.

3.1 Adaptive Squish Pattern
As we have discussed in Section 2, the dimensionality of squish
topologies is not determined by the clip window size but the com-
plexity of given patterns, which is not compatible with most ma-
chine learning models. Additionally, the large variation of pattern
geometric information will induce more challenge on model conver-
gence and generality, which can be explained by the relatively good
behavior of the pixel-based images. Inspired by the benefits of data
normalization computer vision task, here we propose an adaptive
squish representation that derives from classic squish patterns. The
main objectives are (1) reducing the variance of pattern geo-
metric information (i.e. δx and δy) and (2) extending original

squish pattern into desired dimensions. The basic idea is fur-
ther adding more scan lines such that the topology dimensionality
matches machine learning model requirements and the variance of
δs can be minimized.

Before discussing more details, we first introduce an operation
M ′ =RepeatElements(M , s,a), which duplicates the columns
(a = 0) or rows (a = 1) of a matrix M ∈ Ra1×a2 by certain times
such that the shape of the new matrix M ′ will be increased to a
desired value. Equation (5) determines how the kth column ofM ′
is constructed when a = 0.

m′k =mj ,∀
j−1∑
i=1

si < k ≤

j∑
i=1

si , (5)

where mj is the jth column of M and k = 1, 2, ...,
∑n
i=1 si . Row

duplication can be done similarly by

RepeatElements(M, s, 1)

=RepeatElements(M⊤, s, 0)⊤. (6)

For example, if we let s =
[
1 1 2 1

]⊤ and a = 0, then the
RepeatElements operation on the topology matrix of Figure 2
will result in

T ′ =

1 0 0 0 0
0 0 0 0 0
1 1 1 1 1
1 1 3 3 1
1 1 1 1 1

. (7)

We can also notice that RepeatElements is equivalent to get the
topology matrix after adding additional scan lines that can evenly
split existing grids. The number and the direction of additional
scan lines are determined by s and a. Compared to zero-padding,
RepeatElements extends a squish topology to a given size while
keeping all the entries of the topology matrix to be informative.
Now the problem becomes where and how many scan lines we
should add, i.e. determining s for both x and y directions.

We denote the duplication vectors for both directions as sx and
sy respectively. To ensure the layout represented by the squish
pattern unchanged, we also need to scale and duplicate δx and δy
accordingly. Here we formulate the following problem to obtain
satisfactory sx and sy to change the topology matrix to a desired
size as well as attaining low variance δx and δy . For simplicity, we
discard x and y subscription and use unified symbols in following
discussion and assume the desired total number of scan lines in one
direction is d . The geometry information before and after scaling
are denoted as δ and δ ′.

min
s
| |δ ′ | |∞ (8a)

s.t. δ ′i = δi/si ,∀i, (8b)

si ∈ Z
+,∀i, (8c)∑

i
si = d . (8d)

The problem in Formula (8) aims to add more scan lines in the origi-
nal squish pattern such that the grids are split into given number of
pieces. The objective ensures the variance of the geometric vectors
are minimized. Although this problem is non-convex and hard to
solve, we can still observe the basic idea beneath this problem is

adding scan lines to split large grids. Here we will propose two
algorithms that promise an approximate solution of Formula (8).

Algorithm 1 Obtaining adaptive squish patterns with a greedy
procedure.

Input: T , δ , a, d0, d ;
Output: T , δ ;
1: while d0 < d do
2: s ← 1 ∈ Rd0 , i ← argmaxi {δi |i = 1, 2, ...,d0 − 1};
3: si ← 2, δi ← δi/2,∀i;
4: δ ← RepeatElements(δ , s, 1);
5: T ← RepeatElements(T , s,a);
6: d0 ← d0 + 1;
7: end while

Algorithm 1 circumvents Formula (8) and directly targets at
obtaining adaptive squish patterns where scaling and duplication
are conducted in serial. It requires inputs of original squish topology
matrix, geometry information vector δ with respect to a given
direction a, the current and the desired total number of scan lines
d0 and d along that direction. The algorithm will continuously add
scan lines untild0 reachesd . In each iteration, we first find the index
i corresponding to the largest value in δ (line 2), then we build a
split vector s that has the same size as δ and reduce the largest
value in δ by a half (line 3), and then both δ andT will be updated
with RepeatElements according to current s indicating a scan
line is added at location i (lines 4–5) followed by the update of d0.

Algorithm 2 Deriving an approximate solution of Formula (8) that
will be used for generating adaptive squish patterns.

Input: δ , d0, d ;
Output: s;
1: l ←

∑
i δi ;

2: t ← l/(d − 1);
3: si ← max{1,int(δi/t)},∀i;
4: while

∑
i si < d − 1 do

5: δ ′i ← δi/si ,∀i;
6: i ← argmaxi {δi |i = 1, 2, ...,d0 − 1};
7: si ← si + 1;
8: end while
9: δi ← δi/si ,∀i;
10: δ ← RepeatElements(δ , s, 1);
11: T ← RepeatElements(T , s,a);

Algorithm 2 does not generate the adaptive squish patterns on-
the-fly and we target at Formula (8) itself for an optimal or sub-
optimal s . Therefore, only δ , d0 and d are required. The first step
is to calculate the mean t for all the δi s which will be used as a
criteria to determine s (lines 1–2). We then obtain an approximate
s according to the ratio between current δ and t (line 3). We add
additional scan lines at index i where δi is still the largest among all
the entries in δ until the requirement of the number of scan lines is
met (lines 4–8). A few steps are required to get the adaptive squish
pattern, including update the δ (line 9) and duplicate entries in δ
(line 10) andT (line 11). We will show later in the experiment that

x+f(x)

conv

conv

conv

x

ReLU

ReLU

ReLU

+

f(x)

conv

conv

conv

x

ReLU

ReLU

ReLU

(a) (b)

Figure 3: CNN vs. ResNet CNN.

Algorithm 2 actually performs better than Algorithm 1, which can
be explained by the fact that the ideal objective value in Formula (8)
is the mean of δi s that is targeted by Algorithm 2.

To make the adaptive squish patterns compatible with convolu-
tional neural networks, we packageT , δx and δy into a 3D tensor
S ∈ Ra1×a2×3 that is defined below,

S[:, :, 0] = T , (9)

S[:, :, 1] = RepeatElements(δ⊤x , [a1], 1), (10)
S[:, :, 2] = RepeatElements(δy , [a2], 0). (11)

3.2 The Neural Network Architecture
3.2.1 ResNet Block. ResNet has shown significant better train-

ing convergence and model generality. It resembles regular convolu-
tional neural networks except additional shortcut links connecting
the input and the output of each convolution stage, which is a
group of convolution layers as designed in VGG [23]. Visualiza-
tion of ResNet and legacy convolution stage are shown in Figure 3,
where we can see that in a ResNet block, the input of a convolution
stage is added up to the output of that stage and it is the addends
goes into the next layer. While in conventional CNN, all layers are
connected in serial. One advantage of the ResNet architecture is
that gradients can not only be propagated back through regular
convolution layers but can also jump over the whole convolution
stage.

3.2.2 Our Network Architecture. The detailed network configu-
rations are listed in Table 1 where we also list one state-of-the-art
architecture used for image-based hotspot detection for compari-
son. Columns “Layer” list layer types and ID. Columns “Filter” and
“Stride” define the size and the scan step of convolution and pooling
layers. Columns “Output” list the output diminsionality of current
layer. Yang et al. [12] use a reference input size of 320×320 which
is exactly the same as the benchmark clip size with 1nm resolution.
The output sizes of our architecture are derived with an input size
of 64×64×3 that corresponds to the adaptive squish pattern size.
Columns “Parameter” show the number of trainable parameters
of each layer that reflects the neural network capacity. Although
our network has 20× more trainable parameters than [12], most of

Training Data Testing Data

Squish Pattern

Adaptive Squish
Pattern

Model Training

Model Selection/
Cross Validation

Squish Pattern

Adaptive Squish
Pattern

Model Testing

HS/NHS?

Figure 4: Multilayer hotspot detection flow.

the paramteres come from more feature maps within same layers,
which can be efficiently distributed into GPU cores in parallel. We
will also show later that our network exhibits similar throughput
compared to [12].

3.3 Multilayer Hotspot Detection Flow
Our multilayer hotspot detection flow is summarized in Figure 4.
Both trainging and testing layouts are cataloged with legacy squish
patterns that will be used to derive adaptive squish patterns. We
train machine learning models with adaptive squish dataset and
select the best model with standard cross-validation. Finally, the
machine learning model will categorize testing data into hotspot
and nonhotspot.

4 EXPERIMENTAL RESULTS
The framework is implemented using Python 2.7withTensorflow
library [24]. All experiments are conducted on a platform with
NVIDIA Tesla P100 accelerator.

4.1 The Dataset
To verify the effectiveness and the performance of our multilayer
hotspot detection flow, we adopt an industry 14nm benchmark lay-
out that contains at most 3 layers that cover metal 4, via 3 and via 4.
The statistics are listed in Table 2. Columns “Train” and “Test” indi-
cate the training set and testing set respectively. Columns “Image”
and “Squish” denotes the data dimensionality that is used for image-
based detection and adaptive squish pattern-based detection. Rows
“Hotspot” and “Nonhotspot” correspond to the number of hotspot
and non-hotspot clips. We can notice that the benchmark is consis-
tent with regular layout designs where hotspot patterns/locations
are extremely rare, which brings much more challenges to machine
learning engines [12]. To address this concern, we apply a training
technique that during training, we manually force each mini-batch
contains same number of hotspot and nonhotspot samples.

4.2 Effectiveness of Adaptive Squish Patterns
In this experiment, we show how adaptive squish patterns behave
with two approximate solutions. We train the neural networks

Table 1: Neural networks configuration details.

JM3 [12] Ours
Layer Filter Stride Output Parameter Layer Filter Stride Output Parameter

conv1-1 3×3×4 2 160×160×4 36 conv1-1 5×5×128 2 32×32×128 9600
conv1-2 3×3×4 2 80×80×4 144 conv1-2 5×5×128 1 32×32×128 409600
conv2-1 3×3×8 1 80×80×8 288 conv1-3 5×5×128 1 32×32×128 409600
conv2-2 3×3×8 1 80×80×8 576 conv1-4 5×5×128 1 32×32×128 409600
conv2-3 3×3×8 1 80×80×8 576 conv2-1 5×5×256 2 16×16×256 819200
pool2 2×2 2 40×40×8 conv2-2 5×5×256 1 16×16×256 1638400
conv3-1 3×3×16 1 40×40×16 1152 conv2-3 5×5×256 1 16×16×256 1638400
conv3-2 3×3×16 1 40×40×16 2304 conv2-4 5×5×256 1 16×16×256 1638400
conv3-3 3×3×16 1 40×40×16 2304 conv3-1 5×5×512 2 8×8×512 3276800
pool3 2×2 2 20×20×16 conv3-2 5×5×512 1 8×8×512 6553600
conv4-1 3×3×32 1 20×20×32 4608 conv3-3 5×5×512 1 8×8×512 6553600
conv4-2 3×3×32 1 20×20×32 9216 conv3-4 5×5×512 1 8×8×512 6553600
conv4-3 3×3×32 1 20×20×32 9216 conv4-1 5×5×1024 2 4×4×1024 13107200
pool4 2×2 2 10×10×32
conv5-1 3×3×32 1 10×10×32 9216
conv5-2 3×3×32 1 10×10×32 9216
conv5-3 3×3×32 1 10×10×32 9216
pool5 2×2 2 5×5×32
fc1 2048 1638400 fc1 1024 16777216
fc2 512 1048576 fc2 2 2048
fc3 2 1024

Summary 2746068 59796864

Table 2: Benchmark statistics.

Train Test Image Squish

Hotspot 3073 6015 320×320 64×64×3
Nonhotspot 973197 1457830

using two types of squish patterns obtained from Algorithm 1 and
Algorithm 2 respectively. The initial learning rate is set to be 0.001
and decays by 0.7 every 2000 steps. The batch size is 64 and each
batch contains 32 hotspot samples and 32 non-hotspot samples.
Neuron weights are initialized with xavier approach [25] and are
optimized with Adam optimizer on softmax cross entropy loss.
We also apply weight normalization on weights in all convolution
layers and fully connected layers with a coefficient of 0.001. The
trained model is selected based on standard cross validation with a
validation set contains 500 hotspot samples from the training set.
The maximum training step is set to 10000. Table 3 lists the detailed
hotspot detection results. It can be obviously seen that Algorithm 2
outperforms Algorithm 1 from both hotspot detection accuracy (by
1.7%) and false alarm (by 7719 clips), which can be explained by the
fact that Algorithm 2 achieves much lower variance of geometric
vector values.

Table 3: Result comparison of two adaptive squish solutions
and a baseline CNN with image-based inputs.

Item JM3 [12] Algorithm 1 Algorithm 2

Accuracy (%) 98.87 97.51 99.24
False Alarm Rate (%) 4.81 5.05 4.52

Hit 5947 5865 5969
False Alarm 70193 73645 65926
Precision (%) 7.81 7.38 8.30

4.3 Result Comparison with A State-of-the-art
CNN Solution

In this experiment, we train another baseline CNN model using
the neural networks proposed in [12]. The detailed architecture
is listed in Table 1. We train the neural network with exactly the
same strategy as discussed in previous section. The only difference
is that the inputs become image/pixel-based representation with a
resolution of 1nm per pixel, and the input size changes to 320×320
accordingly. As can be seen in the column “JM3 [12]” in Table 3,
the image-based input behaves better than Algorithm 1 but worse
than Algorithm 2. Although the hit count in [10] is quite close to
the result of Algorithm 2, there are still significantly larger amount
of false alarms.

0.00 0.02 0.04 0.06 0.08 0.10
0.80

0.85

0.90

0.95

1.00

FPR

TP
R

JM3 [12] (AUC=0.9960)
Algorithm 1 (AUC=0.9932)
Algorithm 2 (AUC=0.9954)

Figure 5: Partial receiver operating characteristics of three
hotspot detectors.

It can be observed that pixel-based layout is actually a special
case of adaptive squish pattern. If we chose d to be the same as
clip size in terms of nm, the matrix that represents a clip image
will be the optimal solution of Formula (8) where all the entries of
δx and δx are one with zero variance. However, larger input size
brings computational cost, requires more storage and equips with
redundant information that are not training friendly.

We also depict the part of the receiver operating characteristic
(ROC) of three models in Figure 5. We can observe that three mod-
els show good quality in terms of area under ROC curve (AUC)
with Algorithm 1 slightly weaker than image-based solution and
Algorithm 2, which is coherent with the detection results listed in
Table 3. [12] exhibits even better than Algorithm 2 in terms of AUC.
By analyzing the detailed data, however, we find that most of the
AUC advantages of [12] come from the region where the decision
threshold is above 0.9. That means the model of [12] shows higher
confidence on hotspot patterns that can be correctly predicted by
both classifiers, which explains why [12] does not behave as good
as Algorithm 2 in final prediction results as in Table 3.

5 CONCLUSION
In this paper, we propose a adaptive layout squish representation
which is lossless, storage friendly, compatible with neural networks
and naturally support multilayer patterns. Such representation is
applied in a medium sized convolutional neural networks with
ResNet blocks. To the best of our knowledge, this is first time
multilayer layout hotspots are considered in hotspot detector design.
Experimental results show that our framework outperforms a state-
of-the-art CNN-based hotspot detector on both accuracy and false
alarm. Future research on reducing false alarms will be explored to
enable the framework to face more challenging EUV design flow.

ACKNOWLEDGEMENTS
This work is supported in part by The Research Grants Council of
Hong Kong SAR (Project No. CUHK24209017).

REFERENCES
[1] W.-C. Chang, I. H.-R. Jiang, Y.-T. Yu, andW.-F. Liu, “iClaire: A fast and general lay-

out pattern classification algorithm,” in ACM/IEEE Design Automation Conference

(DAC), 2017, pp. 64:1–64:6.
[2] W.-Y. Wen, J.-C. Li, S.-Y. Lin, J.-Y. Chen, and S.-C. Chang, “A fuzzy-matching

model with grid reduction for lithography hotspot detection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 33,
no. 11, pp. 1671–1680, 2014.

[3] K.-J. Chen, Y.-K. Chuang, B.-Y. Yu, and S.-Y. Fang, “Minimizing cluster number
with clip shifting in hotspot pattern classification,” in ACM/IEEE Design Automa-
tion Conference (DAC), 2017, pp. 63:1–63:6.

[4] B. Yu, D. Z. Pan, T. Matsunawa, and X. Zeng, “Machine learning and pattern
matching in physical design,” in IEEE/ACM Asia and South Pacific Design Automa-
tion Conference (ASPDAC), 2015, pp. 286–293.

[5] B. Yu, J.-R. Gao, D. Ding, X. Zeng, and D. Z. Pan, “Accurate lithography hotspot
detection based on principal component analysis-support vector machine classi-
fier with hierarchical data clustering,” Journal of Micro/Nanolithography, MEMS,
and MOEMS (JM3), vol. 14, no. 1, p. 011003, 2015.

[6] T. Matsunawa, B. Yu, and D. Z. Pan, “Laplacian eigenmaps and bayesian clustering
based layout pattern sampling and its applications to hotspot detection and OPC,”
in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC),
2016, pp. 679–684.

[7] M. Shin and J.-H. Lee, “Accurate lithography hotspot detection using deep convo-
lutional neural networks,” Journal of Micro/Nanolithography, MEMS, and MOEMS
(JM3), vol. 15, no. 4, p. 043507, 2016.

[8] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask optimization with
lithography-guided generative adversarial nets,” in ACM/IEEE Design Automation
Conference (DAC), 2018, pp. 131:1–131:6.

[9] T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correction with hierar-
chical bayes model,” in Proceedings of SPIE, vol. 9426, 2015.

[10] H. Yang, J. Su, Y. Zou, B. Yu, and E. F. Y. Young, “Layout hotspot detection
with feature tensor generation and deep biased learning,” in ACM/IEEE Design
Automation Conference (DAC), 2017, pp. 62:1–62:6.

[11] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new lithography hotspot detec-
tion framework based on AdaBoost classifier and simplified feature extraction,”
in Proceedings of SPIE, vol. 9427, 2015.

[12] H. Yang, L. Luo, J. Su, C. Lin, and B. Yu, “Imbalance aware lithography hotspot
detection: a deep learning approach,” Journal of Micro/Nanolithography, MEMS,
and MOEMS (JM3), vol. 16, no. 3, p. 033504, 2017.

[13] H. Zhang, B. Yu, and E. F. Y. Young, “Enabling online learning in lithography
hotspot detection with information-theoretic feature optimization,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2016, pp. 47:1–47:8.

[14] D. Ding, A. J. Torres, F. G. Pikus, and D. Z. Pan, “High performance lithographic
hotspot detection using hierarchically refined machine learning,” in IEEE/ACM
Asia and South Pacific Design Automation Conference (ASPDAC), 2011, pp. 775–780.

[15] W. Zhang, X. Li, S. Saxena, A. Strojwas, and R. Rutenbar, “Automatic clustering
of wafer spatial signatures,” in ACM/IEEE Design Automation Conference (DAC),
2013, pp. 71:1–71:6.

[16] F. E. Gennari and Y.-C. Lai, “Topology design using squish patterns,” Sep. 9 2014,
US Patent 8,832,621.

[17] D. Ding, B. Yu, J. Ghosh, and D. Z. Pan, “EPIC: Efficient prediction of IC manufac-
turing hotspots with a unified meta-classification formulation,” in IEEE/ACM Asia
and South Pacific Design Automation Conference (ASPDAC), 2012, pp. 263–270.

[18] H. Yang, Y. Lin, B. Yu, and E. F. Young, “Lithography hotspot detection: From shal-
low to deep learning,” in IEEE International System-on-Chip Conference (SOCC),
2017, pp. 233–238.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Conference on Neural Information Processing
Systems (NIPS), 2012, pp. 1097–1105.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.
770–778.

[21] Y. Lin, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, M. Li, and D. Z. Pan,
“Data efficient lithography modeling with residual neural networks and transfer
learning,” in ACM International Symposium on Physical Design (ISPD), 2018, pp.
82–89.

[22] A. J. Torres, “ICCAD-2012 CAD contest in fuzzy pattern matching for physi-
cal verification and benchmark suite,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2012, pp. 349–350.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” International Conference on Learning Representations
(ICLR), 2015.

[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al., “TensorFlow: A
system for large-scale machine learning,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016, pp. 265–283.

[25] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), vol. 9, 2010, pp. 249–256.

