
A Practical Split Manufacturing Framework for Trojan Prevention via Simultaneous
Wire Lifting and Cell Insertion

Meng Li1, Bei Yu2, Yibo Lin1, Xiaoqing Xu1, Wuxi Li1, and David Z. Pan1

1ECE Department, University of Texas at Austin, Austin, TX, USA
2CSE Department, The Chinese University of Hong Kong, NT, Hong Kong

ABSTRACT

Trojans and backdoors inserted by untrusted foundries have be-

come serious threats to hardware security. Split manufacturing is

proposed to prevent Trojan insertion proactively. Existing meth-

ods depend on wire lifting to hide partial circuit interconnections,

which usually suffer from large overhead and lack of security

guarantee. In this paper, we propose a novel split manufactur-

ing framework that not only guarantees to achieve the required

security level but also allows for a drastic reduction of the intro-

duced overhead. In our framework, insertion of dummy circuit

cells and wires is considered simultaneously with wire lifting. To

support cell and wire insertion, we propose a new security crite-

rion, and further derive its sufficient condition to avoid compu-

tation intensive operations in traditional methods. Then, for the

first time, a novel mixed integer linear programming formulation

is proposed to simultaneously consider cell and wire insertion to-

gether with wire lifting, which significantly enlarges the design

space to guarantee the realization of the sufficient condition un-

der the security requirements and overhead constraints. With ex-

tensive experimental results, our framework demonstrates much

better efficiency, overhead reduction, and security guarantee com-

pared with existing methods.

I INTRODUCTION

With the globalization of integrated circuit (IC) supply chains,

design complexity and cost of design houses have been reduced

significantly. However, many emerging security vulnerabilities

have come along as well, including hardware Trojans [1–4], re-

verse engineering [5,6] and so on, which result in economic losses

on the order of billions of dollars annually. Hardware Trojans in-

serted by untrusted foundries are extremely harmful to the system

security, while the detection of such hardware Trojans remains to

be very difficult. Therefore, how to prevent the Trojan insertion

by untrusted foundries becomes a very critical issue.

Design-for-security techniques, including IC camouflaging [7–

9] and split manufacturing [10–17], are proposed to prevent

the security vulnerabilities proactively. Split manufacturing di-

rectly targets at preventing the Trojan insertion from untrusted

foundries. In the split manufacturing process, the circuit layout is

split into front-end-of-line (FEOL) layers, which consist of all the

transistors and interconnections in lower metal layers, and back-

end-of-line (BEOL) layers, which consist of all the interconnec-

tions in higher metal layers. Because the fabrication of BEOL

layers usually requires less advanced technologies, it is affordable

1

3

5

2

4

6

1’

3’

5’

2’

4’

6’

Original: FEOL:

(a)

1

2

4

3

5

1

2

4

3

5

D
Original: FEOL:

(b)

Fig. 1. (a) Realize 2-security by lifting wires to BEOL layers: both

nodes 1′ and 2′ may implement 1 and are indistinguishable; (b)

2-security cannot be realized simply with wire lifting (different

colors represent different cell types).

to maintain such trusted foundries for BEOL layer fabrication, by

which important circuit information can be hidden to prevent Tro-

jan insertions by untrusted foundries.

In recent papers [16–19], different split manufacturing frame-

works have been proposed. The first formal security criterion for

split manufacturing, named as k-security, is proposed in [16]. A

circuit is defined to be k-secure if for each cell in the netlist, there

exist k cells in FEOL layers, all of which may be its actual phys-

ical implementation and are indistinguishable for the attackers.

Fig. 1(a) gives an example of a 2-secure circuit since each cell in

original netlist may be implemented by 2 cells in BEOL layer. For

instance, cell 1 can be implemented by cells 1′ and 2′. The secu-

rity definition is formalized based on graph isomorphism [20], as

will be discussed later. To realize k-security, a greedy algorithm is

also proposed to determine the wires to be lifted to BEOL layers

[16]. In [17–19], techniques in physical synthesis stage, including

fault-analysis based pin swapping, placement perturbation, and so

on, are proposed to prevent the untrusted foundries from reverse-

engineering the hardware intellectual property. These methods

are proposed under another orthogonal attack model, for which

Trojan prevention is not the target.

Despite the extensive researches on split manufacturing, there

are three fundamental problems that have not been properly

solved. Firstly, the required security level, i.e. k-security, is not

guaranteed to achieve with existing split manufacturing strategy

[16]. Consider the original netlist shown in Fig. 1(b), because

cell 1 has different types compared with all other cells, it can al-

ways be identified. Therefore, 2-security can never be achieved

by lifting wires to BEOL layers. Secondly, all the state-of-the-art

methods suffer from scalability issue. As shown in [16], to deter-

mine the wires to be lifted, the isomorphism between large graphs

needs to check repetitively. Though it can be formulated as a sat-

978-1-5090-0602-1/18/$31.00 ©2018 IEEE

3D-3

265

isfiability (SAT) problem, the computation cost makes the method

intractable quickly even for small circuits. Thirdly, existing meth-

ods also suffer from large overhead. According to [16], more than

2× wirelength overhead is introduced just to realize 2-security for

a small benchmark circuit. To make split manufacturing practical,

the above problems on security guarantee, efficiency and perfor-

mance overhead must be solved.

In this paper, we propose a novel split manufacturing frame-

work to address the security and practicality issues of existing

methods. We observe that inserting dummy cells and wires in

FEOL layers can enhance security and reduce overhead effec-

tively. For example, consider the netlist in Fig. 1(b), by inserting

dummy cell D and wires (4, D), (3, D), 2-security can be real-

ized. However, insertion of dummy nodes and wires can lead to

situations when FEOL layers contain cells and wires that do not

exist in original netlist, which cannot be modeled with existing

framework [16]. We propose a new security criterion that is fully

compatible with node and wire insertion and further derive its

sufficient condition to enable an efficient realization. Our secu-

rity criterion can also balance the trade-off between security and

overhead by allowing the flexibility of protecting arbitrary subset

of circuit nodes. A framework is further proposed to realize the

security criterion while minimizing the introduced overhead. Our

framework consists of a novel mixed integer linear programming

(MILP) based formulation to enable simultaneous wire lifting and

cell insertion, and a layout refinement technique to guarantee se-

curity in physical synthesis stage. We summarize our contribu-

tions as follows:

• A new security criterion that is fully compatible with cell

and wire insertion is proposed.
• A sufficient condition to guarantee security is derived to en-

able more efficient split manufacturing process.
• For the first time, an MILP-based framework is proposed to

simultaneously consider dummy cell and wire insertion with

wire lifting.
• The proposed flow is evaluated with extensive experimental

results and demonstrates good efficiency and practicality.

The rest of the paper is organized as follows. Section II de-

fines the split manufacturing problem and our new security cri-

terion. Section III proposes a sufficient condition to achieve the

proposed criterion. Section IV describes our split manufactur-

ing framework. Section V demonstrates the performance of the

framework, followed by conclusion in Section VI.

II PROBLEM FORMULATION

A Attack Model of Untrusted Foundries
In this paper, we consider attackers from untrusted foundries that

target at inserting malicious hardware Trojans into the design. We

assume the following attack model as described in [16]: 1) the

attacker has the gate-level netlist of the design; 2) the attacker has

full knowledge of the FEOL layers, including the cells and wires

in lower metal layers as well as their physical information; 3)

the attacker knows the algorithms for FEOL generation but does

not know the specific mapping between the cells in FEOL and

original netlist.

The assumption on the knowledge of the gate-level netlist is

pretty strong but indeed possible. The main reason is that the

attackers who intend for such Trojan insertion can potentially

be resourceful enough to have malicious observers in the design

stage [16]. Meanwhile, the profit of a successful Trojan insertion

can also be pretty large, especially for military applications [21].

Given the gate-level netlist, the attackers can determine the target

nodes in the design and try to identify its physical implementation

in FEOL layers for Trojan insertion. To protect the circuit nodes

from being identified by the attackers, in the following sections,

we will propose our split manufacturing framework.

B Split Manufacturing Security Analysis
A circuit can be regarded as a graph G = 〈V,E, �, ω〉. V is the set

of vertices, with each vertex corresponding to one circuit node.

E is the set of directed edges corresponding to the wires in the

circuit. Label function � : V → [t] maps each vertex to a cell

type, where [t] = {1, . . . , t} denotes the set of all possible cell

types in the circuit. ω : V → {0, 1} assigns a binary weight to

each vertex with ω(v) = 1 indicating that the vertex v is selected

for protection. ω is defined to make the framework flexible to

balance the trade-off between security and introduced overhead.

The original netlist and the FEOL layers can be represented

as two graphs, denoted as G and H . For the original circuit,

VG, EG and, �G are straightforward to define. ωG is determined

by the designer considering the circuit functionality, overhead

constraints and so on. To determine these parameters for H ,

we need to consider its generation process. To generate H , for

each v ∈ VG, we add v′ to VH such that �H(v′) = �G(v) and

ωH(v′) = ωG(v). We denote v′ = φ(v) as the corresponding

node for v, which represents the actual cell in FEOL that imple-

ments v in the netlist. Meanwhile, for each (v, u) ∈ EG, we add

(φ(v), φ(u)) to EH . Then, we consider the three operations for

the generation of H: 1) wire lifting: if (u′, v′) ∈ EH is lifted

to BEOL, then, EH = EH \ {(u′, v′)} with VH , �H and ωH un-

changed; 2) dummy node insertion: if u′ with �u′ is inserted,

then, VH = VH ∪ {u′} with �H(u′) = �u′ , ωH(u′) = 0 and EH

is unchanged; 3) dummy wire insertion: if (u′, v′) is inserted,

then, EH = EH ∪ {(u′, v′)} with VH , �H and ωH unchanged.

We only allow inserting wires pointing to the dummy nodes to

guarantee the circuit functionality is not changed. Based on the

description of the allowed operations, VH , EH , �H and ωH can be

acquired accordingly.

Take an example of G and H in Fig. 2. In G, we have 1 and

2 with the same functionality, i.e. �G(1) = �G(2). Assume that

we select node 1 and 5 for protection, then, ωG(1) = ωG(5) = 1.

To generate H , we first add all the corresponding nodes to H
for each node in G, i.e. 1′, 2′, 3′, 4′, 5′. Then, we add node 6′

and wire (4′, 6′) to H and lift wire (2′, 5′). Therefore, we have

ωH(1′) = ωH(5′) = 1 and the other nodes have zero weight.

To insert a Trojan, the attacker will first select v ∈ VG based on

the analysis of the design and then, try to locate its correspond-

ing node φ(v) in H . To formalize the process of locating φ(v),
state-of-the-art method [16] leverages the concept of graph iso-

morphism. Two graphs G1 and G2 are isomorphic if there exists

a bijective mapping f : V1 → V2 such that (u, v) ∈ E1 if and only

if (f(u), f(v)) ∈ E2 and �1(u) = �2(f(u)), �1(v) = �2(f(v)).
Because only wire lifting is considered in existing methods, we

can also find a subgraph of G that is isomorphic to H . However,

when the insertion of dummy wires and cells are considered, the

3D-3

266

1

2
5

3

4

i2

o1

o2

i1

(a)

1′

3′

4′
5′

6′

2′

i2

o1

o2

i1

(b)

1

2
5

3

4

i2

o1

o2

i1

(c)

1′

3′

4′
6′

2′

i2

o1

o2

i1

(d)

Fig. 2. Example of (a) Original graph G (i1 and i2 are input pins

while o1 and o2 are output pins), (b) FEOL graph H , (c) Spanning

subgraph Gs of (a), and induced subgraph Hs of H .

original isomorphic relation is not satisfied. This is because H
contains nodes and edges that do not present in G. We observe

the following relations for G and H that always hold:

• ∀v ∈ VG, ∃v′ ∈ VH s.t. v′ = φ(v).
• ∀v′, u′ ∈ VH , if ∃u ∈ VG s.t. u′ = φ(u), then, ∀(v′, u′) ∈
EH , ∃v ∈ VG s.t. v′ = φ(v) and (v, u) ∈ EG.

The second relation holds because we cannot add dummy edges

pointing to the corresponding node of u ∈ VG. For example, in

Fig. 2, suppose 5′ = φ(5), since we are not allowed to add any

dummy edges pointing to 5′, we must have 3′ = φ(3) and (3, 5) ∈
EG. To formalize the relations described above, we leverage the

concept of spanning subgraph [22] and induced subgraph [22].

Definition 1 (Spanning Subgraph). A subgraph Gs of G is re-
ferred to as a spanning subgraph if VGs = VG.

Definition 2 (Induced Subgraph). A subgraph Gs of G is referred
to as an induced subgraph if ∀(u, v) ∈ EG with u, v ∈ VG,
(u, v) ∈ EGs

if and only if u, v ∈ VGs
.

For example in Fig. 2(a), Gs is a spanning subgraph of G in

Fig. 2(a) since VGs
= VG. Hs in Fig. 2(b) is an induced subgraph

of H in Fig. 2(b) since for any pair of nodes in Hs, if there exists

an edge between them in H , the edge also exists in Hs. For exam-

ple, node 1′ and 3′ exist in Hs. Because (1′, 3′) ∈ EH , for Hs to

be an induced subgraph, we must have (1′, 3′) ∈ EHs . Consider

the spanning subgraph of G and the induced subgraph of H , we

define the relation of spanning subgraph isomorphism as below.

Definition 3 (Spanning Subgraph Isomorphism). Given two gr-
aphs G1 and G2, we say that G1 is spanning subgraph isomor-
phic to G2 if there exists a spanning subgraph of G1 that is iso-
morphic to an induced subgraph of G2.

Spanning subgraph isomorphism defines the criterion for the

attackers to identify the corresponding node φ(v) in FEOL for

a target node v in the netlist. In Fig. 2(a), since Gs and Hs

are isomorphic, G is spanning subgraph isomorphic to H with

1, 2, 3, 4, 5 being matched to 2′, 1′, 4′, 3′, 6′, respectively. Due

to the proposed isomorphic relation, 2′ is possible to implement

node 1 in the final layout for the attacker. We denote node 2′ as

the candidate node for node 1.

Spanning subgraph isomorphism relation is more general com-

pared with the graph isomorphism relation. When only wire lift-
ing is considered, it reduces to the graph isomorphism. It can
also capture the situations when H and G have different number
of vertices and when H contains edges that do not correspond to

1

2
3

(a)

1′

2′
3′

4′

(b)

1′

2′
3′

4′

(c)

1′

2′
3′

4′

(d)

Fig. 3. Probability difference for different candidate nodes.

any edges in G. This enables us to consider cell and wire inser-
tion in split manufacturing process.

From the spanning subgraph isomorphism checkings between

H and G, for v ∈ VG, a set of candidate nodes can be identified

in VH , denoted as a candidate set. We observe that the nodes in

the candidate set can differ from each other by their weight and

their probability to be the actual corresponding node. The differ-

ence on weight is easy to understand according to the definition.

The difference in probability can come from the randomness in

the split manufacturing algorithm. For example in Fig. 3(a) and

Fig. 3(b), if the probability for wire insertion is low in the algo-

rithm, then, 3′ is more likely to be the corresponding node for 3
since to form Fig. 3(b), only one dummy node needs to be added.

The difference can also come from the rule that inserting wires

to the corresponding nodes is not allowed. For example in

Fig. 3(c), 1′, 2′, 3′ are all in the candidate set of 1. If 3′ = φ(3),
(1′, 3′) and (2′, 3′) must exist in the original graph, which indi-

cates 4′ is dummy. We show an example in Fig. 3(d) that 3′ and

4′ are equally likely to be the corresponding node for 3.

Now we propose our security criterion for a cell as follows to

capture the spanning subgraph isomorphism relation and the ob-

servations identified above.

Definition 4 (k-Secure Cell). Given original graph G and FEOL
graph H , we say that v ∈ VG is k-secure with respect to G and
H if the probability for the attacker to pick a node with non-zero
weight from its candidate set is no greater than 1/k.

In the definition, ∀v ∈ VG, by enforcing the probability to pick

a node with non-zero weight, both the difference on weight and

the probability for nodes in the candidate set of v can be captured.

Now we define the security criterion for split manufacturing.

Definition 5 (k-Security). Given G and H , we say that 〈G,H〉 is
k-secure if ∀v ∈ VG with ωG(v) = 1, v is k-secure with respect
to G and H .

By the above security criterion, we can guarantee that for any

node that the attackers may target at, the probability of a success-

ful Trojan insertion is always no greater than 1/k. In this way, by

making k large enough, we can guarantee much higher expense

and risk of the Trojan insertion.

III k-SECURITY REALIZATION

To determine spanning subgraph isomorphism directly can be

computation intensive due to graph isomorphism checkings. We

adopt recent progress in privacy preserving network publishing

[20] to derive a sufficient condition for k-security to avoid direct

graph comparison. Our heuristic solution relies on the following

concept denoted as k-isomorphism [20].

Definition 6 (k-Isomorphism [20]). A graph is k-isomorphic if it
consists of k disjoint isomorphic subgraphs.

3D-3

267

0

1 9

62

3

5 7

8

4

G:

(a)

0

1 9

62

3

5 7

8
4

D

H: Hs,0

Hs,1

Hs,2

(b)

Fig. 4. Example for Theorem 1: G is 2-secure with respect to H .

For example, the graph H of FEOL in Fig. 2(b) is 2-isomorphic

with VHs,1
= {1′, 3′, 5′} and VHs,2

= {2′, 4′, 6′}. Specifically,

we call nodes 1′ and 2′ in the same position of Hs,1 and Hs,2.

If node 1′ is the candidate node for node 1, then, we find that 2′

can also be a candidate node for 1. Moreover, their probability

to be the actual corresponding node is also the same. Assume

1′ = φ(1), then, if ω(2′) = 0, 1 is 2-secure with respect to G
and H in Fig. 2. Based on the observation, we have the following

lemma for a k-isomorphic graph.

Lemma 1. Given G and H = {Hs,0, . . . , Hs,k−1}, which is k-
isomorphic. ∀v ∈ VG with ωG(v) = 1 and φ(v) ∈ VHs,i

, where
i ∈ {0, . . . , k− 1}, if each u′ ∈ VHs,j (j 	= i), where u′ and φ(v)
are in the same position of Hs,j and Hs,i, respectively, satisfies
ωH(u′) = 0, then, v is k-secure with respect to G and H .

Lemma 1 formalizes the condition for v ∈ VG to be k-secure.

Because we only require the nodes with non-zero weight to be

k-secure, we have the following theorem for k-security.

Theorem 1. Given G and H , assume H = {Hs,0, . . . , Hs,k},
where {Hs,0, . . . , Hs,k−1} are k-isomorphic. G is k-secure with
respect to H if ∀v ∈ VG with ωG(v) = 1, the following conditions
are satisfied:

1. φ(v) ∈ VHs,i where i ∈ {0, . . . , k − 1}.

2. ωH(u′) = 0, ∀u′ ∈ VHs,j
(j ∈ {0, . . . , k − 1}, j 	= i),

where u′ and φ(v) are in the same position of Hs,j and Hs,i,
respectively.

We skip the formal proof due to the limit of space and use the

example in Fig. 4 to illustrate. In Fig. 4(b), H is composed of

3 subgraphs with Hs,0 and Hs,1 being isomorphic to each other.

Nodes with non-zero weights like 3, 5, 6, 9 are either in Hs,0 or in

Hs,1 while the weights of the nodes in the same position as them,

i.e. D, 2, 7, 8 are zero. Therefore, they are 2-secure with respect

to G and H according to Lemma 1. Node 4 remains unprotected

since its weight is zero. Therefore, G is 2-secure. By introducing

weights for each node and Hs,k, our framework is flexible to pro-

tect an arbitrary subset of circuit nodes to balance the trade-off

between security and the introduced overhead.

IV PRACTICAL FRAMEWORK FOR TROJAN PREVENTION

A MILP-based FEOL Generation
To generateH = {Hs,0, . . . , Hs,k} from G, because dummy wire

and node insertion is allowed, one trivial solution of H is to copy

G for k − 1 times. This indicates that k-security can always be
achieved when insertion of dummy cells and wires is considered.

TABLE I

Notations used in the MILP formulation.
xi xi = 1 if the ith node is selected

xij xij = 1 if the ith node is inserted to Hs,j

ωi weight of the ith node

rm rm = 1 if the mth edge needs to be lifted to BEOL

dj dj = 1 if a dummy node is inserted to Hs,j

yl yl = 1 if an edge can be added from lth location to current

location in Hs,0, . . . , Hs,k−1

ylj ylj = 1 if an edge can be added from lth location to current

location in Hs,j

zl zl = 1 if an edge can be added from current location to lth
location in Hs,0, . . . , Hs,k−1

zlj zlj = 1 if an edge can be added from current location to lth
location in Hs,j

IN ij set of starting locations of edges pointing to current location

that can be added if ith node is added to Hs,j

OUT ij set of ending locations of edges pointing from current location

that can be added if ith node is added to Hs,j

RES i set of edges connected to ith node from unadded node

Hs,0 Hs,1

0 62 1 5 7

0

1 9

62

3

5 7

8

4
984

z21
y20 y21
z20 0th location

Current Location
(3rd location)

D0 D1

x40 x41 x91x90
x80 x81

x4 x8 x9 d0 d1

RES 4 = {(4, 9)}, IN 40 = IN 41 = {0},OUT 40 = OUT 41 = ∅
RES8 = {(3, 8)}, IN 80 = {3}, IN 81 = OUT 80 = OUT 81 = ∅
RES9 = {(4, 9)}, IN 91 = {3}, IN 90 = OUT 90 = OUT 91 = ∅Critical Nodes: 5, 7, 8, 9

Graph G:

Fig. 5. Example of parameters in the MILP formulation.

To reduce the introduced overhead, we propose a novel MILP-

based framework. The inputs to the framework includes the orig-

inal circuit netlist and the selected nodes for protection. Based

on Theorem 1, we anonymize all the selected nodes by adding

them to Hs,0, . . . , Hs,k−1 iteratively. In each iteration, we select

k nodes of the same label and add them to Hs,0, . . . , Hs,k−1. We

make sure that exactly one of k nodes has a non-zero weight to

satisfy Theorem 1. We list the notations of the MILP formula-

tion in TABLE I and use the following example to illustrate the

problem.

Example 1. Consider the original graph G in Fig. 5. Assume
nodes 0, 2, 6 and nodes 1, 5, 7 are already added to Hs,0 and Hs,1

respectively in the first three iterations. All the dotted lines in the
figure denote the edges that need to be lifted if only these nodes
are added. To choose a pair of nodes of same label with minimum
cost to insert into Hs,0 and Hs,1, we calculate the insertion cost
for the remaining nodes with non-zero weight, i.e. nodes 3 and
9, by solving the MILP for each of them and picking the one with
the smallest cost. For node 9, we get nodes 8 and 4 of the same
cell type and also consider insertion of dummy node d0 and d1
to help anonymization. If we add node 4 to Hs,0, because edge
(0, 4) exists in G, we have IN 40 = {0}, which indicates that
there is one edge, i.e. (0, 4), pointing from the 0th location in
Hs,0 to the current location that can be added to Hs,0 if node 4
is inserted. Similarly, we can determine IN and OUT for each
node. Meanwhile, because (4, 9) is the only edge connecting node
4 to unadded nodes, we have RES 4 = {(4, 9)}. When node 4 is
added, all the edges in RES4 will need to be lifted to BEOL.

Now, we introduce our MILP formulation for the problem as

3D-3

268

shown in Formula (1). The objective in Formula (1) consists of

the number of edges to be removed, the number of edges that

can be added back and the area of the inserted dummy nodes,

where A denotes the cell area. α, β and γ are user-defined pa-

rameters to balance the cell insertion with wire lifting. Constraint

(1a) guarantees that one node can at most be inserted into one of

Hs,0, . . . , Hs,k−1. Constraint (1b) requires exactly one of the in-

serted nodes has weight 1. Constraints (1c) and (1d) indicate the

condition when one edge can be added back to all subgraphs. The

reason that dj only exists in constraint (1c) is that we only allow

inserting wires pointing to dummy nodes. To guarantee isomor-

phism for all the subgraphs, yl equals to 1 only when the edges

can be added in each subgraph, i.e. ylj = 1, ∀j ∈ {0, . . . , k− 1}.

Constraint (1e) indicates the condition when one edge needs to

be lifted. While all the variables should be integers, by constrain-

ing xij and dj to be integers, we find relaxing the rest variables

to be continuous does not change the optimal solution, and also

achieves much better efficiency.

min
x,d

α
∑

l

rl − βk
∑

l

(yl + zl) + γA
∑

j

dj (1)

s.t.

k∑

j=1

xij = xi, ∀i; (1a)

∑

i

xiwi = 1; (1b)

yl ≤ ylj , ylj ≤
∑

i,l∈IN ij

xij + dj , ∀j, l; (1c)

zl ≤ zlj , zlj ≤
∑

i,l∈OUT ij

xij , ∀j, l; (1d)

rl ≥ xi, if rl ∈ RES i, ∀i, l. (1e)

Besides the constraints above, we also set a hard constraint for

the number of lifted wires. This is because the total number of

vias through a certain layer is usually fixed, which limits the num-

ber of wires to be lifted. In the iterative process of generating

FEOL, when we find such constraint is violated, we will increase

the cost of wire lifting in the MILP formulation by increasing α
and β, and run the iterative process again.

B k-Secure Layout Refinement
After the first two steps, cells and connections in FEOL layers

H are determined such that 〈G,H〉 is k-secure. To guarantee

security while reduce overhead in the physical synthesis stage,

we propose a k-secure layout refinement technique.

In the placement stage, because existing methods usually tar-

get at minimizing the total wirelength, cells with actual connec-

tions tend to be placed close to each other. This makes it pos-

sible for the attackers to recover the connections in BEOL lay-

ers based on the physical proximity information [17]. Existing

method [16] chooses to ignore the lifted wires in placement stage

to guarantee security but suffers from large overhead. This is be-

cause many cells are left floating in FEOL layers after wire lifting,

which makes the distance between the cells that are connected in

BEOL layers highly unoptimized. We propose to insert virtual

nets to connect a node v that is selected for protection and its can-

didate nodes with all the adjacent nodes of v. The inserted virtual

2 4 6 8 10 12 14

1

1.5

2

Security Level

W
ir

el
en

g
th

(1
03

u
m

)

Wire (Ours)

Wire ([16])

2 4 6 8 10 12 14

3

3.5

4

4.5

A
re

a
(1
02

u
m

2
)

Wire (Ours)

Wire ([16])

Area (Ours)

Area ([16])

(a)

c1908 c3540 c5315 c6288 Shft
0

0.5

1

1.5

2

2.5

Benchmark

W
ir

el
en

g
th

(1
04

u
m

)

Original

[16]

Ours

0

50

100

150

Im
p
ro

v
em

en
t

(%
)

(b)

Fig. 6. Comparison with [16]: (a) overall framework (dotted line

indicates unrealizable); (b) layout refinement method.

nets not only guarantee security, but also make sure a node is still

placed close to its neighbors. As we will show in Section V, the

layout refinement technique allows for 49.6% overhead reduction

compared with [16].

V EXPERIMENTAL RESULTS

A Experimental Setup
In this section, we report on our experiments to demonstrate the

effectiveness of the proposed split manufacturing framework. The

input to our framework is a gate-level netlist and the nodes to

protect. To select the nodes for protection, we follow the Trojan

insertion methods used by TrustHub [23]. We first calculate the

signal probability, logic switching probability and observability

for each circuit node, and then, select the nodes with rare cir-

cuit events by comparing with a certain threshold. We modify

the threshold to change the portion of nodes for protection. The

benchmarks consist of six test cases from ISCAS benchmarks

[24] and two functional units (Shifter and Multiplier)

from OpenSPARC T1 processor. FEOL layers consist of all the

cells and lower metal layers up to metal 3, and BEOL layers con-

sist of metal 4 and above. We implement our framework in C++

and conduct physical synthesis using Cadence Encounter [25].

We run the experiments on an eight-core 3.40 GHz Linux server

with 32 GB RAM.

B Comparison with State-of-the-Art
We first compare the proposed framework with [16] that only con-

siders wire lifting. The original program is modified for our se-

curity criterion. We compare the change of overhead with the in-

crease of the required security level. Small benchmark c432with

20% selected nodes is chosen due to runtime limit of the previous

algorithm. As we show in Fig. 6(a), 12-security cannot be realized

with the previous method, while our method guarantees to achieve

all security levels. Meanwhile, to achieve 10-security, our meth-

ods can achieve on average 59.1% wirelength reduction with less

than 4% area increase. Then, as in TABLE II, we compare the ef-

ficiency of the two frameworks. To achieve 10-security, our meth-

ods achieve on average more than 290× speedup in small circuits.

For large circuits, the previous method cannot finish within 105s

while our framework can finish within 300s. The performance of

our framework can be further boosted by circuit graph partition-

ing. We leverage widely adopted partition algorithm Metis [26]

to minimize the wires across different partitions. For benchmark

Shifter, by partitioning the circuit graph into 2 subgraphs and

applying our framework to each subgraph, the runtime can be

reduced to 162.6s. For larger benchmark Multiplier with

3D-3

269

TABLE II

Comparison on Runtime
Bench # Protect # Nodes [16] (s) Ours (s)

c432 23 214 140.8 0.5

c880 19 355 979.6 3.2

c1908 24 519 >100000 8.1

c3540 49 1012 >100000 37.0

c5315 73 1864 >100000 135.0

c6288 90 2568 >100000 297.9

Shifter 84 2579 >100000 273.9
0 2 4 6 8

0

0.1

0.2

0.3

0.4

0.5

Protected Node (%)

P
o

rt
io

n

Dummy Cell

Lifted Edge

(a)

0 5 10 15 20 25 30

0

0.2

0.4

0.6

Security Level

P
o

rt
io

n

Dummy Cell

Lifted Edge

(b)

0.7 0.8 0.9 1 1.1 1.2 1.3

0

0.2

0.4

0.6

Coefficient γ

P
o

rt
io

n

Dummy Cell

Lifted Edge

(c)

Fig. 7. The relation between overhead and (a) portion of protected nodes, (b) security

level and (c) MILP coefficients.

23855 nodes and 695 nodes to protect, by partitioning the circuit

graph into 10 subgraphs, our framework can finish within 300s.

We then compare our placement refinement method based on

virtual net insertion with the proposed placement method in [16].

Large ISCAS benchmarks and Shifter unit are used to pro-

vide a more practical comparison. As shown in Fig. 6(b), our

placement refinement method provides on average 49.6% wire-

length improvement compared with [16]. Especially for bench-

mark c6288, since a large number of cells are floating in FEOL

layers, our methods achieve more than 130% overhead reduction.

We also compare the selected nodes and their candidate nodes on

the physical proximity to their neighbors. The average of the dis-

tance difference is less than 1/40 of the standard deviation, which

leaves negligible probability for the attacker to recover the origi-

nal connection based on proximity information.

C Relation between Overhead and Framework Parameters
At last, we study the change of overhead as the increase of the se-

curity level k, the number of protected nodes and the coefficients

γ in the MILP formulation. We use Shifter benchmark as an

example. In Fig. III(a), to achieve 10-security, we show the in-

crease of the overhead with the increase of the protected nodes.

In Fig. III(b), we show the relation between overhead and the re-

quired security level in order to protect 5% of nodes. In Fig. III(c),

we fix α = 0.5, β = 1 in the MILP formulation and change γ
from 0.7 to 1.3. By changing γ, cell insertion and wire lifting are

balanced to help provide better usage of the routing resources and

chip space for different designs.

VI CONCLUSION

In this paper, we propose a framework to enhance the security

and practicality of split manufacturing. A new security criterion

is proposed and its sufficient condition is obtained to enable more

efficient realization. To realize the sufficient condition, wire lift-

ing, dummy cell and wire insertion are considered simultaneously

through a novel MILP formulation for the first time. Layout re-

finement that is fully compatible with existing physical design

flow is also proposed. The proposed framework achieves much

better efficiency, overhead reduction, and security guarantee com-

pared with existing methods.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy
and detection,” IEEE MDTC, vol. 27, no. 1, pp. 10–25, 2010.

[2] S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection tech-
niques,” in Proc. ISCAS, 2015.

[3] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in Proc. SP, 2016.

[4] C. Krieg, C. Wolf, and A. Jantsch, “Malicious LUT: a stealthy FPGA trojan
injected and triggered by the design flow,” in Proc. ICCAD, 2016.

[5] R. Torrance and D. James, “The state-of-the-art in semiconductor reverse
engineering,” in Proc. DAC, 2011, pp. 333–338.

[6] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. HOST, 2017.

[7] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis of
integrated circuit camouflaging,” in Proc. CCS, 2013.

[8] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan, “Provably
secure camouflaging strategy for IC protection,” in Proc. ICCAD, 2016.

[9] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic obfus-
cation for creating sat-unresolvable circuits,” in Proc. GLSVLSI, 2017.

[10] Y. Xie, C. Bao, and A. Srivastava, “Security-aware design flow for 2.5D IC
technology,” in Proc. TrustED, 2015.

[11] K. Vaidyanathan, R. Liu, E. Sumbul, Q. Zhu, F. Franchetti, and L. Pileggi,
“Efficient and secure intellectual property (IP) design with split fabrication,”
in Proc. HOST, 2014.

[12] B. Hill, R. Karmazin, C. T. O. Otero, J. Tse, and R. Manohar, “A split-
foundry asynchronous FPGA,” in Proc. CICC, 2013.

[13] J. Valamehr, T. Sherwood, R. Kastner, D. Marangoni-Simonsen,
T. Huffmire, C. Irvine, and T. Levin, “A 3-D split manufacturing approach to
trustworthy system development,” IEEE TCAD, vol. 32, no. 4, pp. 611–615,
2013.

[14] K. Vaidyanathan, B. P. Das, and L. Pileggi, “Detecting reliability attacks
during split fabrication using test-only BEOL stack,” in Proc. DAC, 2014.

[15] K. Xiao, D. Forte, and M. M. Tehranipoor, “Efficient and secure split manu-
facturing via obfuscated built-in self-authentication,” in Proc. HOST, 2015.

[16] F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara, “Securing computer
hardware using 3D integrated circuit (IC) technology and split manufactur-
ing for obfuscation,” in Proc. USENIX Security Symposium, 2013.

[17] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing secure?”
in Proc. DATE, 2013.

[18] Y. Wang, P. Chen, J. Hu, and J. Rajendran, “The cat and mouse in split
manufacturing,” in Proc. DAC, 2016.

[19] J. Magaña, D. Shi, and A. Davoodi, “Are proximity attacks a threat to the
security of split manufacturing of integrated circuits?” in Proc. ICCAD,
2016.

[20] J. Cheng, A. W.-C. Fu, and J. Liu, “K-isomorphism: privacy preserving
network publication against structural attacks,” in Proc. SIGMOD, 2010.

[21] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discovers
backdoor in military chip,” in Proc. CHES, 2012.

[22] D. B. West, Introduction to Graph Theory. Prentice Hall, 2000.

[23] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability analysis
and trust benchmarks development,” in Proc. ICCD, 2013.

[24] F. Brglez, D. Bryan, and K. Koźmiński, “Combinational profiles of sequen-
tial benchmark circuits,” in Proc. ISCAS, 1989.

[25] “Cadence SOC Encounter,” http://www.cadence.com.

[26] G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,” in
Proc. Supercomputing. ACM, 1995.

3D-3

270

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

