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ABSTRACT
With the continuous shrinking of technology nodes, lithogra-
phy hotspot detection and elimination in the physical ver-
ification phase is of great value. Recently machine learn-
ing and pattern matching based methods have been exten-
sively studied to overcome runtime overhead problem of ex-
pensive full-chip lithography simulation. However, there is
still much room for improvement in terms of accuracy and
Overall Detection and Simulation Time (ODST). In this pa-
per, we propose a unified machine learning based hotspot de-
tection framework, where feature extraction and optimization
is guided by an information-theoretic approach and solved
by a dynamic programming model. More importantly, our
framework can be naturally extended to online learning sce-
nario, where some newly detected and verified layout patterns
are integrated into the learning model. Experimental results
show that the proposed batch detection model outperforms
all state-of-the-art methods with 3.47% of accuracy improve-
ment and 58.88% of ODST reduction on ICCAD-2012 contest
benchmark suite. More importantly, equipped with online
learning, our framework can further improve both accuracy
and ODST.

1. INTRODUCTIONS
With the continuous shrinking of the transistor feature size,

chip manufacturing becomes more and more challenging due
to the limitation of conventional 193nm wavelength lithogra-
phy [1]. Although various design for manufacturability (DFM)
techniques have been developed, such as design rule check
(DRC), optical proximity correction (OPC), and multiple pat-
terning lithography (MPL), there still exist problematic lay-
out patterns (a.k.a. lithography hotspots) that may cause
opens/shorts, performance degradation, or even parametric
yield loss [2]. Therefore, how to detect and avoid these lithog-
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Figure 1: Examples of 2-D feature space of hotspot de-
tection. (a) All testing hotspots and non-hotspots can be
correctly detected. (b) All testing non-hotspots become false
alarms.

raphy hotspots accurately during physical verification phase
is critical for yield improving.

Conventional hotspot detection widely relies on full-chip
lithography simulation, which can achieve very high accuracy
but may suffer from being extremely computational expen-
sive [3, 4]. To provide quick feedback to circuit designers,
recently many fast and coarse-grained hotspot detectors are
proposed, which can be roughly classified into pattern match-
ing based [5–8] and machine learning based [9–13]. On one
hand, pattern matching works on a pre-defined pattern set,
thus it is less efficient on detecting unseen hotspots. Al-
though fuzzy-pattern matching can be applied to dynami-
cally tune appropriate fuzzy regions around known hotspots,
it is still case sensitive and lacks the generalization ability
to various detection environment. On the other hand, with
slightly longer training and prediction time, machine learning
approaches have good generalization ability that may result
in higher accuracy. Nevertheless, this method confronts high
false alarm problem that many non-hotspots may be wrongly
identified as hotspots. So far, neither conventional lithogra-
phy simulation or recent machine learning and pattern match-
ing is performing well enough.

One reason for the unsatisfactory performance is that cir-
cuit layout patterns are very complicated. Conventional ma-
chine learning methods are batch based, thus it is impossible
to obtain all various circuit layout patterns to train a perfect
learning model. Therefore, machine learning based methods
are facing a big challenge: there are no enough representa-
tive instances for model building, which makes it difficult
for the evaluation phase. As shown in Fig. 1(a), if train-
ing instances cover the feature space of testing instances, the
machine learning model is very likely to detect all testing in-
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Figure 2: Overall online hotspot detection framework: Firstly, we apply feature optimization techniques proposed in Section 3
to get optimized circle index and extract feature for training data, followed by batch model learning. Then similarly, we extract
feature for testing data and perform predictions. After training procedure in the left panel of the figure, we sequentially run
lithography simulation for testing instances predicted as hotspots and online update verified instances into our model, as shown
in the right panel of the figure. In this way, our model can be more accurate to later testing instances.

stances correctly. However, if it happens that some testing
instances are in such feature space shown in Fig. 1(b), con-
ventional batch based model can never predict those testing
instances correctly even with some high dimensional kernels.
Therefore, we propose an online hotspot detection framework
to dynamically update our model with instances predicted as
hotspots, which makes our model more capable of predicting
new coming testing instances. For example in Fig. 1(b), those
testing non-hotspots will be predicted as hotspots and their
real label will be verified by lithography simulator. Given
the labeled instances, online learning is performed to update
our learning model and this can further enhance the predic-
tion power of the model. Our online hotspot detector also
shows its advantages of being compatible to our batch model
(i.e. Our method can perform online learning without any
modification of the batch model). In addition, our learning
model will only be updated with testing instances predicted
as hotspots whose label will be verified by lithography sim-
ulator in conventional methods. Therefore, there will be no
additional lithography simulation time compared to conven-
tional batch based methods. Equipped with online learning,
our framework can further improve the runtime performance
of the whole detection flow.

Besides the learning model, it is also imperative to capture
key characteristics of hotspot and non-hotspot layout pat-
terns effectively. Current feature extraction methods focus on
density, shape, topology and other geometrical information of
layout patterns (e.g. [8,14]). However, these methods have the
following drawbacks: 1) It is hard for them to be adaptive to
different layout designs; 2) Some complicated feature repre-
sentation may cause severe over fitting problem. Hotspots are
formed due to light passing through photomasks and causing
interference with each other. Therefore, we should consider
the impact of light propagation and interference [15] during
feature extraction.

To overcome the drawbacks of conventional layout features,
we propose a novel Maximal Circle Mutual Information (MCMI)
scheme based on information theory. Under this scheme, the
feature representation is optimized by a dynamic program-
ming model. To break the limitation of conventional batch
based methods, we develop an online learning method to in-
tegrate new instances to improve the learning model. To the
best of our knowledge, this is the first time an online learning
update is used to solve hotspot detection problem. Moreover,
this is also the first time a novel information-theoretic scheme
MCMI is proposed to perform feature optimization in hotspot
detection problems. Our key contributions are as follows:

1. A novel MCMI scheme based on information theory is
proposed to perform feature extraction and optimiza-
tion for layout pattern representation, which can be
adaptive to different layout designs;

2. An online boosting method is designed to bridge batch
learning and online learning. A lossless online weak
learning classifier matching with the layout feature prop-
erty is constructed.

3. 3.47% of accuracy improvement, 58.23% and 58.88% re-
duction in the number of false alarm and Overall De-
tection and Simulation Time (ODST) can be achieved
respectively comparing to state-of-the-art methods.

The rest of paper is organized as follows. In Section 2, we
describe the online hotspot detection framework, evaluation
metrics as well as problem formulations. In Section 3, our
proposed layout feature is described. In Section 4, online
learning model is derived. Section 5 presents the experimental
results, followed by conclusion in Section 6.

2. PRELIMINARIES
In this section, we first discuss the online hotspot detection

framework. Then we define several useful terms to describe
the quality of our algorithm and give the problem formula-
tion of batch hotspot detection as well as the online hotspot
detection.

2.1 Online Hotspot Detection Framework
Conventional machine learning based hotspot detectors are

batch based, where the learning model is trained on a fixed
batch set of data. The conventional hotspot detection flow is
shown in Fig. 2 without the two red boxes. When the model
is finalized, testing instances are fed into the model and each
gets a predicted value indicating the labels. Instances iden-
tified as hotspots are sent to lithography simulator and be
further verified. Due to expensive lithography simulation, nu-
merous false alarms would cause serious time overhead prob-
lem. Conventional batch learning based methods ignore the
model updating step in the whole detection flow and shows
its limitations in the following two aspects: 1) The learning
model cannot be dynamically updated with new instances; 2)
Numerous false alarms cause too much lithography simulation
time.

Lithography simulation is an absolutely necessary step of
the whole detection flow. In order to achieve better perfor-
mance, it is natural to apply both lithography simulation and
online model updating (as shown by the red box on the right



panel of Fig. 2) for sequentially coming testing instances . The
superiority of our proposed framework is that it can not only
increase the detection accuracy, reduce false alarms, but also
significantly improve the runtime performance of the whole
hotspot detection flow.

2.2 Evaluation Metrics
To quantify the performance of the proposed framework,

we will define several terms. The most important issue of
hotspot detection is to detect correctly as many hotspots as
possible. Thus, to evaluate the accuracy of hotspot detection,
we define the following term:

Definition 1 (Accuracy [16]). The rate of correctly pre-
dicted hotspots among the set of actual hotspots.

It may happen that a detector regards a testing instance as
a hotspot whose real label is non-hotspot. We define the
following term to evaluate the performance of this aspect:

Definition 2 (False Alarm [16]). The number of incorrectly
predicted non-hotspots.

In the hotspot detection flow, we would like to achieve high
accuracy and minimum false alarms, where high accuracy
means hotspots are correctly detected while low false alarms
lead to less lithography simulation time. Besides accuracy, no
matter reducing the model testing time or lithography sim-
ulation time, our goal is to reduce the total runtime of the
detection flow. Therefore, we define a new term, Overall De-
tection and Simulation Time (ODST), to measure the sum of
model evaluation time and lithography simulation time.

Definition 3 (ODST). The sum of the lithography simula-
tion time for layout patterns detected as hotspots (including
real hotspots and false alarms) and the learning model eval-
uation time.

2.3 Problem Formulation
Here we give two problem formulations: conventional batch

hotspot detection and proposed online hotspot detection.

Problem 1 (Batch Hotspot Detection). The inputs are
circuit layout data containing hotspot, non-hotspot layout
patterns and their labels, the objective for batch hotspot de-
tection is to train an efficient machine learning model that
can maximize the accuracy and minimize the number of false
alarms.

As mentioned in previous sections, circuit layout patterns
may be very complicated and we need to dynamically up-
date testing instances to improve the existing model. The
evaluation terms for conventional hotspot detection are accu-
racy and false alarm, however, it would be more reasonable
to use accuracy and ODST to evaluate the performance of
online hotspot detection flow. The problem formulation of
online hotspot detection is as follows.

Problem 2 (Online Hotspot Detection). The inputs are
trained learning model, verified testing instances which are
circuit layouts containing hotspot and non-hotspot layout pat-
terns as well as their labels. The objective is to dynamically
update the learning model to maximize accuracy and reduce
ODST.

3. LAYOUT FEATURE EXTRACTION
As one of the pattern recognition problems, hotspot detec-

tion is targeting at detecting potential problematic layout pat-
terns. These patterns vary a lot among different designs and
different circuit layers, thus extracting discriminative layout
features plays an essential role in the detection flow. However,
most of existing approaches rely on a pre-defined structure to
extract layout features. Besides, these methods ignore the
impact of light propagation during the extraction procedure.
Although the feature extraction method in the work [17] in-
tends to reflect light propagation by applying concentric cir-
cle sampling, it cannot be adaptive to different layout designs
due to the manually set positions of those circles. Therefore,
to better capture different layout pattern characteristics, we
propose a novel feature selection method to extract layout
features based on concentric circle sampling. We formulate
it as a circle selection problem as described in Problem 3
and propose a Maximal Circle Mutual Information (MCMI)
scheme, where the circle selection problem is formulated as an
optimization problem and solved by a dynamic programming
method.

Problem 3 (Circle Selection Problem). Given a set of
indices of potential circle position candidates I = {i| 1 ≤ i ≤
rmax, i ∈ N} (i denotes the circle index and also the radius of
the circle in that position, rmax represents the largest circle
radius that can be sampled in a layout clip and the distance
between two adjacent circles is 1nm) and the target layout
pattern classification variable y (y ∈ Y and Y = {−1, 1}), the
objective is to find a subset of nc circle position candidates
indexed by Inc ⊆ I (nc is the number of circles we will select)
that have the highest dependency with y.

3.1 Circle Selection via Mutual Information
At first, we encode each circle to a more compact representa-
tion. We uniformly sample p points on each circle, every point
is a binary number 0 or 1, where 1 means that the sampling
point contains circuit layout and 0 means that the sampling
point contains only blank area. We then concatenate all 0s
and 1s on the ith circle to form a bit sequence denoted as zi
(zji stands for the jth sampling point on the ith circle and zi
is a vector variable with length p and zji ∈ {0, 1}). We then
convert them into decimal numbers. The computing method
is as follows:

ci =

p−1∑
j=0

zji · 2
j , (1)

where ci is the encoded decimal number and ci ∈ C, C =
{0, 1...2p − 1}. For example, the circle in Fig. 3 should be
encoded to 29.

For circle selection, it is desirable to maximize the depen-
dency of selected circles on the classification variable y. Mu-
tual information [18] is a fundamental notion in information
theory that defines the amount of information held in a ran-
dom variable. We use mutual information to compute the
dependency between the ith circle and the classification vari-
able y. Let Ci be a random variable defined in C and Y be
a random variable defined in the space Y, then the mutual
information is denoted as I(Ci;Y ):

I(Ci;Y ) =
∑
ci∈Ci

∑
y∈Y

p(ci, y) log
p(ci, y)

p(ci)p(y)
, (2)
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Figure 3: The overall feature optimization framework: Firstly, we densely sample a set of candidate circles from the training
data and encode their binary bit sequences to decimal numbers; Then a dynamic programming model is applied to get an
optimized circle index. At last, the features of both training and testing data are extracted by this optimized circle index.

where p(ci, y) is the joint probabilistic distribution function
of random variable Ci and Y , and p(ci) and p(y) are the
marginal probability distribution function of Ci and Y re-
spectively. I(Ci;Y ) in Eq. (2) can be easily computed using
our training data.

The circle with a higher score of mutual information has a
higher correlation with the label variable, and we would like
to select a subset from all rmax circles that can help to predict
the label variable better. We can see from Fig. 4 that circles
closer to the clip center are more likely to get higher mutual
information score than those far away from the clip center,
thereby telling us that the hotspot is more sensitive to the
nearer layout patterns. This observation is consistent with
the impact of real light propagation and interference. Fig. 4
also shows that as the distance increases, the mutual informa-
tion value has some slight phenomenon of periodic variation,
which also corresponds to the property of light propagation.
In addition, we can observe the possibility to select the circle
subset adaptively from different layout design by the curve
plots in Fig. 4.
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Figure 4: The relation between circle radius and the score
of that circle.

3.2 MCMI and Circle Subset Selection
The target is to select a circle subset to represent our lay-

out patterns. Fig. 4 shows that the circle nearer to the center
is more likely to have higher mutual information score. How-
ever, if we only select the circles with highest scores, much
redundant information will be included since adjacent circles
contain similar information. Besides, useful information from
circles with larger radius may be lost. Therefore, we propose
a Maximal Circle Mutual Information (MCMI) scheme for

our layout feature optimization.

I∗nc
= arg max

Inc⊆I

∑
i∈Inc

I(Ci;Y ), (3)

s.t. |i− j| >= d, ∀ i, j ∈ Inc ,

where I∗nc
is selected circle index, I is defined in Problem 3

and I(Ci;Y ) is defined in Eq. (2). d is the minimum distance
between two adjacent selected circles.

As we mentioned in the Problem 3, the distance between
two adjacent circles is 1nm, thus, for a 1200 × 1200 layout
clip, we can densely sample 600 circles. However, only a few
of these circles would contribute to the hotspot formation.

Therefore, we formulate an optimization problem to per-
form circle subset selection as follows:

max v>w, (4)

s.t.

rmax∑
i=1

wi = nc, ∀ i, wi ∈ {0, 1},

|i− j| ≥ d, ∀ i 6= j, wi = 1, wj = 1,

where nc is the desired number of circles. Variable v is a rmax
dimensional vector, where vi represents the mutual informa-
tion score of each circle computed by I(Ci;Y ). Variable w is
also a rmax dimensional vector, where wi is used to indicate
whether the ith circle is selected. Since circles closer to each
other are more likely to contain similar information, we use
variable d to keep the distance between adjacent circles large
enough, which may avoid over fitting and eliminate redun-
dant information. Variable nc is used to control the number
of circles, as we only want to select the most informative cir-
cles.

In order to solve the optimization problem in Eq. (4), we ap-
ply the dynamic programming technique. Let rmax = i, nc =
j, then D[i, j] is the optimal solution of Eqn. (4). Then we
obtain the following recursion:

D[i, j] = max{v[i] +D[i− d, j − 1], D[i− 1, j]}, (5)

where i ∈ {1, ..., rmax}, j ∈ {1, ..., nc}. After updating Eq. (5)
for all i, j in D, we trace back from the D[rmax, nc] and get all
the desired circles. After this feature optimization procedure,
we can obtain the index of selected concentric circles Inc =
{i| wi = 1} and Inc ⊆ I. The final feature vector can be
constructed from the index variable Inc .

Performance comparison between selected circle subset and
conventional circle subset [19] is shown in Fig. 5. We conduct
our experiments in the same environment and under the same
parameter setting except for the step of feature extraction. As
we can see from Fig. 5, feature extraction using selected circle
subset can increase accuracy and reduce false alarms over
the one using conventional circle subset, which demonstrated



 97

 98

 99

 100

Case1
Case2

Case3

A
c
c
u

ra
c
y
 (

%
)

conventional
selected

(a)

 0

 1000

 2000

 3000

 4000

Case1

Case2

Case3

F
a

ls
e

 A
la

rm
 #

conventional

selected

(b)

Figure 5: Performance comparison between optimized circle
subset and regular circle subset. (a) The impact on accuracy;
(b) The impact on false alarm number.

the superiority of our method. In particular, equipped with
selected feature, false alarms are dramatically reduced and
this saves a lot of lithography simulation time.

4. LEARNING MODEL
As mentioned in Section 1, conventional batch based ma-

chine learning model cannot capture all the complicated lay-
out patterns due to the limited number of training instances.
Thus, we apply online learning method to further improve
existing model by querying the label of testing instances pre-
dicted as hotspots using lithography simulator. As mentioned
in [13], Adaboost [20] with decision tree [21] have better per-
formance than SVM [22] and ANN [23] in hotspot detection
problems, simply because SVM is hard to select a suitable
kernel for hotspot detection and ANN is difficult to define
the right number of layers and hidden units. Inspired from
that, we further improve the prediction power of machine
learning by choosing the most suitable boosting classifier and
corresponding weak classifier for our hotspot detection.

In the next two subsections, we will describe a boosting
method with several good properties at first. Then we de-
scribe the intuition of hotspot formation and its relations
with our layout feature. At last we design a lossless [25] (The
classifier stays the same no matter batch learning or online
learning) online Naive Bayes classifier modified from [24] to
enhance the performance of our layout feature.

4.1 Online Ensemble Method
In practice, there exists malicious noises when generating

the label of a training layout pattern in our hotspot detection
problem and the noise may also happen during the layout fea-
ture extraction. Therefore, we would like to eliminate these
noises by applying a more robust classifier with the ability to
be online updated by new instances. However, Adaboost can-
not handle the problem of malicious noise occurred in training
data and is hard to be extended to an online version. Never-
theless, Smooth Boosting [25] is a good candidate with several
good properties: 1) It can deal with noise and outliers that
often occur in hotspot detection problems; 2) It can efficiently
avoid over fitting problem; 3) It can be used to boost weak
classifiers with real value output; 4) It can be easily extended
to the online scenario and bridge batch learning and online
learning.

Let X ⊆ Zn (our features are represented by integral val-
ues) be the input feature space. The training data for our
boosting method is {(x1, y1), ..., (xm, ym)}. Variable γ, θ, T
are parameters defined in Smooth Boosting [25], The formula-
tion of batch based Smooth Boosting is shown in Algorithm 1.

The difficulty of adjusting Adaboost to an online version is

Algorithm 1 Smooth Boosting

Input: {(x1, y1), ..., (xm, ym)}, γ, θ = γ
2+γ

, T .
1: for i← 1 to n do
2: M1(i)← 1;
3: N0(i)← 0;
4: end for
5: for t← 1 to T do
6: Run weak classifier to get ht such that

1
2

∑n
j=1Mt(j)|ht(xj)− yj | ≤ 1

2
− γ;

7: for j ← 1 to n do
8: Nt(j)← Nt−1(j) + yjht(xj)− θ;
9: end for

10: for j ← 1 to n do

11: Mt+1(j)← min{1.0, (1− γ)
Nt(j)

2 };
12: end for
13: end for
14: return f ←sign( 1

T

∑T
t=1 ht);

the procedure of updating instance weights, where Adaboost
requires to see all examples to determine the instance weights.
Although online Adaboost [26] uses poisson sampling process
to approximate the weighting scheme of Adaboost, it can only
ensure a good hypothesis asymptotically. Luckily, we can
adopt weight updating scheme in Smooth Boosting [25] for
our online version by updating the weight term Mt+1(j) as
follows:

Mt+1(j)← min{1.0, (1− γ)
Nt(j)

2 }, (6)

where Nt(j) can be viewed as the cumulative error on the jth

instance over the previous t rounds of weak classifier update,
γ is the guaranteed advantage of the hypotheses returned by
the weak learner [25].

The instance weight updating scheme of Smooth Boosting
guarantees that the weight update is independent for each
instance (only depends on N(j), the cumulative error of the
jth instance). Therefore, Smooth Boosting provides a con-
venient way to update streaming instance without seeing all
instances. In addition, Smooth Boosting can bridge batch
learning and online learning by trivial modifications of the
original algorithm, while online Adaboost [26] cannot. Al-
gorithm 2 shows how online Smooth Boosting incorporates
streaming instances.

Algorithm 2 Online Boosting

Input: Streaming instance (x, y), batch Smboost classifier.
1: M1 ← 1, N0 ← 0;
2: for t← 1 to T do
3: online update ht(x, y);
4: Nt ← Nt−1 + yht(x)− θ;
5: Mt+1 ← min{1.0, (1− γ)

Nt
2 };

6: end for
7: return f ←sign( 1

T

∑T
t=1 ht);

4.2 Online Weak Classifier
Smooth Boosting methods can efficiently boost the perfor-

mance of weak classifiers and can be online updated with
instances predicted as hotspots. However, Smooth Boosting
requires efficient online weak classifier to guarantee the over-
all performance, and moreover, this weak classifier should also



be related to our layout feature. In addition, it is also impor-
tant to derive a lossless online weak classifier, that is, as data
streams in, its performance will stay the same compared with
that of batch learning. In this work, we apply a modified
Naive Bayes model as our weak classifier, because it not only
is a lossless online classifier but also can work well with our
proposed layout feature.

In our proposed layout feature, we sample points from sev-
eral concentric circles and each sampled point tells whether
the location contains layout pattern or not. Thus, it is natural
to consider the probability of one sampling point contribut-
ing to the hotspot formation. Let (xi, yi) be the data of ith

training instance, where xi is its feature vector and yi is the
label. The probability of the jth sampling point in the ith

instance is as follows:

P (xji |y), (7)

where xji is the value in the jth dimension of the ith instance’s
feature vector.

As hotspot is caused by all the layout patterns in the neigh-
borhood, we will measure all the influence that nearby points
can contribute to the hotspot by:

P (xi|y) = P (x1i , x
2
i , ..., x

n
i |y), (8)

where n is the feature dimension. However, it is very hard to
measure this complicated joint probability distribution func-
tion due to its high dimension and insufficient training data.
Therefore, we propose two assumptions for this classifier re-
lated to our layout feature. One assumption is that sampling
points within a circle are dependent to the hotspot formation
(It corresponds to interference from light source at equal dis-
tance from the hotspot). Another assumption is that different
sampling circles are independent to each other (It corresponds
to our circle selection procedure). In practice, circles may not
be independent to each other and may also cause light inter-
ference. However, we adopt this assumption to reduce the
model complexity and avoid over fitting. Thus, we modify
conventional Naive Bayes classifier and adjust it to our as-
sumptions as follows:

p(x1i , x
2
i , ..., x

n
i |y) =

bn
p
c−1∏

j=0

p(xj·pi , ..., x
(j+1)·p−1
i |y), (9)

where p is the number of sampling points in one circle as we
mentioned in Section 3. Therefore, the classification rules for
our classifier are as follows:

y∗i = arg max
y

p(y)

bn
p
c−1∏

j=0

p(xj·pi , ..., x
(j+1)·p−1
i |y), (10)

where y∗i is the predicted result of the ith testing instance.
The prior probability parameters can be easily computed by
optimizing maximum likelyhood function. The online version
of Naive Bayes classifier can be obtained easily. When new
instance comes, we will update the corresponding prior prob-

abilistic terms, p(y) and p(xj·pi , ..., x
(j+1)·p−1
i |y).

5. EXPERIMENTAL RESULTS
The proposed framework for both batch learning and on-

line learning are implemented in Python programming lan-
guages, and accelerated by Cython on a machine with four-
core 3.7GHz CPUs and 16GB memory. The performance of

Table 1: ICCAD-2012 benchmark statistics [16]

Case1 Case2 Case3 Case4 Case5
Technology 32nm 28nm 28nm 28nm 28nm
Training HS 99 174 909 95 26

Training NHS 340 5285 4643 4452 2716
Testing HS 226 498 1808 177 41

Testing area (mm2) 12516 106954 122565 82010 49583

Table 2: Comparison with hotspot detector [13]

SPIE’15 [13] batch

FA# CPU(s) Accuracy FA# CPU(s) Accuracy

Case1 0 7 100.00% 0 7 100.00%

Case2 0 351 98.60% 0 51 99.40%

Case3 0 297 97.20% 3 66 97.51%

Case4 1 170 87.01% 0 35 97.74%

Case5 0 69 92.86% 0 24 95.12%

average 0.2 178.8 95.13% 0.6 36.8 97.95%

ratio - 4.86 0.97 - 1.0 1.0%

the proposed framework are evaluated on ICCAD-2012 CAD
contest benchmark suite [16], which consists of one 32nm cir-
cuit layout and four 28nm circuit layouts (detailed in Table 1).
For each test case, a set of layout clips are used as training
data to generate the learning model, while another set of lay-
out clips are used as testing data to evaluate the quality of the
learning model. For training data, rows “Training HS” and
“Training NHS” give the hotspot number and non-hotspot
number, respectively. For testing data, row “Testing HS”
lists the hotspot number for each case. Recall in Section 2,
overall detection and simulation time (ODST) consists of two
parts: lithography simulation time and learning model eval-
uation time. In this paper, we use an industry lithography
simulator [27] to carry out simulation on hotspots reported
by each learning model. Observe that through utilizing multi-
core parallelism, the simulation time for each layout core is
around 10 seconds, thus in ODST calculation, we set the sim-
ulation runtime penalty of each hotspot reported by learning
model to 10 seconds.

5.1 Effectiveness of Batch Learning
In the first experiment, we compare our batch learning

based hotspot detector, denoted as “batch”, with a recent
hotspot detector [13] on the ICCAD-2012 benchmark, and
the detailed comparisons are shown in Table 2. For each de-
tector, columns “FA#”, “CPU(s)” and “Accuracy” list the
corresponding false alarm number, runtime of model evalua-
tion in seconds, and the accuracy of our detector, respectively.
Note that the detector of [13] utilizes pre-filtered layout clips
that all hotspots are known to be the center of the clips. In
other words, during testing layout scanning, only the core
area of each clip will be verified, which by nature may report
less false alarm number. To have a fair comparison, in this
experiment, our detector scans the core area of each clip as
well. We can see from Table 2 that comparing with [13] our
framework can achieve around 5× speed-up and increase de-
tection accuracy from 95.13% to 97.95%. Meanwhile, for all
the five cases, only 3 false alarms in total are reported. The
superiority of our method compared to [13] may be related to
the MCMI scheme, where layout feature can be adaptive to
different layout designs.

In the second experiment, we further compare our batch
learning based method with two state-of-the-art hotspot de-
tectors [8, 14], and the comparison is shown in Table 3. Dif-



Table 3: Comparisons with two state-of-the-art hotspot detectors [8, 14]

TCAD’14 [8] TCAD’15 [14] batch

FA# CPU(s) ODST(s) Accuracy FA# CPU(s) ODST(s) Accuracy FA# CPU(s) ODST(s) Accuracy

Case1 1714 11 17151 100.00% 1493 38 14968 94.69% 788 10 7890 100.00%

Case2 4058 287 40867 99.80% 11834 234 118574 98.20% 544 103 5543 99.40%

Case3 9486 417 95277 93.80% 13850 778 139278 91.88% 2052 110 20630 97.51%

Case4 1120 102 11302 91.00% 3664 356 36996 85.94% 3341 69 33478 97.74%

Case5 199 49 2039 87.80% 1205 20 12070 92.86% 94 41 980 95.12%

avg. 3315.4 173.2 33327.2 94.48% 6409.2 285.2 64377.2 92.71% 1363.8 67.5 13705.5 97.95%

ratio - - 2.43 0.96 - - 4.70 0.95 - - 1.0 1.0

Table 4: Batch learning v.s. online learning

batch online

FA# CPU(s) ODST(s) Acccuracy HS# NHS# FA# FA# Redu. CPU(s) ODST(s) Accuracy

Case1 788 10 7890 100.00% 226 704 704 84 12 7048 100.00%

Case2 544 103 5543 99.40% 495 308 308 236 113 3183 99.40%

Case3 2052 110 20630 97.51% 1764 1819 1819 233 133 18299 97.57%

Case4 3341 69 33478 97.74% 173 2096 2096 1245 81 21019 97.74%

Case5 94 41 980 95.12% 40 82 82 12 43 847 97.56%

avg. 1363.8 67.5 13705.5 97.95% 539.6 1008.8 1008.8 362 76.6 10079.2 98.45%

ratio - - 1.36 0.99 - - - - - 1.0 1.0

ferent from Table 2, for each detector, column “ODST(s)”
lists the overall detection and simulation time in seconds. In
this experiment, the layout is decomposed into a set of con-
tinuous but independent grids, which is with the same size of
the core area in training layout. Then all grids are scanned
in ordered and are verified by our batch based hotspot de-
tector. Only the grids covering actual hotspot are labelled
as actual hotspot grids. We can see from Table 3 that our
method achieves the highest average accuracy, lowest average
number of false alarms, lowest average run time and low-
est average ODST. Our method improve the accuracy by
5.24% and 3.47% on average (and a maximum of 6.74%)
compared with [14] and [8] respectively. We also reduce the
number of false alarms by 78.39% and 58.23% on average
compared with [14] and [8] respectively. As described in Sec-
tion 2, ODST can better represent the runtime performance
in hotspot detection, as those instances predicted as hotspots
will be verified by lithography simulator. Table 3 shows that
our methods improve the ODST by 78.71% and 58.88% on
average compared with [14] and [8] respectively. Besides the
proposed MCMI scheme, Smooth Boosting can efficient elim-
inate malicious noise and modified Naive Bayes allows us to
measure correctly the dependency of different sampling points
on a same or different circle, thus our framework significantly
outperforms other methods.

5.2 Effectiveness of Online Learning
Although we have demonstrated the superiority of our batch

learning method in Table 2 and Table 3, some layout patterns
still cannot be predicted correctly, because there is no enough
training data to capture all the layout patterns needed, as
shown in Fig. 1. In the third experiment, we extend our con-
ventional batch learning to online learning scenario. Here we
enable dynamically learning model update at testing stage
and hopefully we can predict the coming instances more ac-
curately. As we know, no matter for real hotspots or false
alarms, once a layout pattern is predicted as hotspot by the
learning model, lithography simulation will be performed to
further verify its real label. Therefore, it is necessary to
perform model updating after lithography simulation, which
makes our model more accurate for the coming testing in-
stances.
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Figure 6: Runtime breakdown for ICCAD benchmark.

We compare our online learning model with our batch learn-
ing model to verify the robustness of our online learning frame-
work. Detailed comparisons of our batch learning model and
online learning model are shown in Table 4. Our online learn-
ing model is denoted as “online” in Table 4 and columns
“HS#”, “NHS#”, “FA# Redu.” list the corresponding
number of updated testing hotspots, number of updated non-
hotspots and the number of reduced non-hotspots compared
to batch learning model, respectively (“NHS#”equals“FA#”,
because the model will update all instances predicted as hotspots).
We also evaluate our online learning framework in terms of
accuracy, false alarms and ODST. ODST includes both model
evaluation time and lithography simulation time, which is the
real runtime for the practical hotspot detection flow. We can
see from Table 4, our online learning framework not only in-
creases the detection accuracy from 97.95% to 98.45%, but
also further reduces the ODST by 26.5%. It should be noted
that through utilizing online learning, we can significantly
reduce the false alarm number, as shown in column “FA#
Redu.”.

Fig. 6 illustrates the runtime breakdown of our online learn-
ing model on the ICCAD-2012 benchmark suite, where total
runtime of online hotspot detection consists of four parts:
training, testing, online update, and lithography simulation.
We can see from Fig. 6 that in our framework, through online
scheme, updating time is only a small portion of the whole
online detection flow, which means that we have saved a lot



of runtime on lithography simulation by applying our online
hotspot detection framework. Moreover, we can see from the
figure clearly that the number of false alarms in Case 2 and
Case 5 are dramatically reduced, since lithography simula-
tion time occupies less proportion. Compared to batch based
methods, there is no extra lithography simulation time in our
online learning framework. In contrast, our framework can
further improve the runtime performance.

6. CONCLUSION
In this paper, we have proposed a novel MCMI scheme

based on information theory to perform feature extraction
and optimization. Guiding by the MCMI scheme, our pro-
posed layout feature can be adaptive to different layout de-
signs. Besides, we constructed an ensemble classifier using
Smooth Boosting and modified Naive Bayes, which outper-
forms state-of-the-art methods in terms of accuracy, false
alarms and ODST in hotspot detection. More importantly, we
extend our framework to the online learning scenario, which
can further reduce the time needed for lithography simulation.
With increasing design complexity and prohibitive runtime
overhead of full-chip simulation, we anticipate the proposed
online learning methodology will become more and more rel-
evant and expect to see a lot of researches.
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