
Attacking a CNN-based Layout Hotspot Detector Using Group
Gradient Method

Haoyu Yang
Chinese University of Hong Kong

Shifan Zhang
Chinese University of Hong Kong

Kang Liu
New York University

Siting Liu
Chinese University of Hong Kong

Benjamin Tan
New York University

Ramesh Karri
New York University

Siddharth Garg
New York University

Bei Yu
Chinese University of Hong Kong

Evangeline F.Y. Young
Chinese University of Hong Kong

Abstract
Deep neural networks are being used in disparate VLSI design au-
tomation tasks, including layout printability estimation, mask opti-
mization, and routing congestion analysis. Preliminary results show
the power of deep learning as an alternate solution in state-of-the-art
design and sign-off flows. However, deep learning is vulnerable to
adversarial attacks. In this paper, we examine the risk of state-of-
the-art deep learning-based layout hotspot detectors under practical
attack scenarios. We show that legacy gradient-based attacks do
not adequately consider the design rule constraints. We present
an innovative adversarial attack formulation to attack the layout
clips and propose a fast group gradient method to solve it. Experi-
ments show that the attack can deceive the deep neural networks
using small perturbations in clips which preserve layout functional-
ity while meeting the design rules. The source code is available at
https://github.com/phdyang007/dlhsd/tree/dct_as_conv.

1 Introduction
Deep neural networks such as convolutional neural networks (CNNs)
are being investigated for use in various VLSI design automation
tasks, including layout printability estimation[1, 2], and mask op-
timization [3]. Instead of human-driven engineering of input fea-
tures for prediction and classification tasks, CNNs can automati-
cally discover/learn features for complex applications. Researchers
have demonstrated the potential of CNNs as an alternative solu-
tion in state-of-the-art design and sign-off flows. In design-for-
manufacturing, a CNN-based hotspot detector speeds-up the es-
timation of the risk of manufacturing a defective layout without
going through time-consuming OPC and lithographic simulation.
However, CNNs are fragile. CNN-based solutions are vulnerable to
adversarial attacks [4–7], and this vulnerability has been extended
to encompass CNN-based hotspot detectors in the VLSI context [8].

CNNs are designed as a multi-level stack of non-linear functions
(e.g., ReLU and Softmax) [9–11] to learn a prior probability over the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431571

M1

M2V1RTL Design
and Synthesis

Placement &
Routing

Resolution
Enhancement
Malicious Attack

DL/ML
Hotspot Detection

Yes

Tapeout
SEM Inspection

No

Malicious Added

Figure 1: Malicious attack poses risks in chip design flow.

input space [7]. Hence the CNN might output unexpected proba-
bilities on the region of the input space that has no training data.
These “empty" regions are filled with objects using label-preserving
transformations. These might be close to the original objects in the
training data in terms of the pixel value. A trained CNN model may
make incorrect predictions on an instance x + r that is perturbed
from the training data x by a tiny amount r with | |r | |2 ≤ ϵ . These
adversarial examples can thus fool the CNN.

To robustify the CNN models, algorithms have been proposed
to generate adversarial examples, allowing designers to probe and
quantify robustness under adversarial settings [4–6]. These include
L-BFGS attack [12], fast gradient sign methods (FGSM) [4], and
basic iterative methods (BIM) [6]. In [12], the authors propose a
framework to generate adversarial examples by solving an opti-
mization problem using L-BFGS method [13] with line searching
on constant parameters in its objective, and they also discuss the
generality and root cause of adversarial examples. [4] introduces
FGSM to generate adversarial examples in a single step gradient-
based attack. This approach adds to the original input x a noise
matrix that is generated from the sign of the gradient of classifica-
tion loss with respect to input pixel values ϵsign(∇x Jθ (x , l)), where
l is the ground truth label of x and Jθ corresponds to the classifi-
cation loss of the trained CNN. The procedure can be viewed as a
one step gradient ascent. FGSM can be extended to target a given
class by adjusting the perturbation term as −ϵsign(∇x Jθ (x , l ′)). l ′
is the target class [14]. BIM [6] is designed for scenarios when data
are indirectly fed into a CNN by certain sensors. BIM forces the per-
turbed image x ′ to be in the L∞ α-neighbourhood of x by clipping
x ′ with clipx ,α (x ′) = min{255,x + α ,max{0,x − α ,x ′}}, where

https://github.com/phdyang007/dlhsd/tree/dct_as_conv
https://doi.org/10.1145/3394885.3431571

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Yang et al.

x ′ = x + ϵsign(∇x Jθ (x , l ′)) is the ordinary FGSM. BIM can be modi-
fied to iterative least-likely class methods by replacing FGSM with
attacking on a certain class.

Although state-of-the-art attacks can fool mainstream image-
classification CNNs trained on oft-used image data [15, 16], the at-
tacks are formulated to manipulate individual pixels. At first glance,
CNN-based hotspot detectors appear insulated from adversarial at-
tacks, as pixel-by-pixel modifications are not meaningful in VLSI
layouts due to design rules constraining valid design artifacts. How-
ever, [8] demonstrated that immunity to adversarial input attacks
does not hold. By converting the pixel-based gradient method (PGM)
into a “DRC-clean” version, they successfully fooled a layout hotspot
detector by adding fraudulent sub-resolution assist features (SRAFs)
in the original via-SRAF designs, posing risks in chip design flow
(see Figure 1). They converted hotspot clips to images and divided
them into blocks of pixels where the ascending gradients for pixels
in a given block are summed to calculate the gradient for that block.
Fraudulent SRAFs are inserted into blocks with large ascending
summed gradients, considering blocks where SRAFs can be added
without violating design rules. There are two aspects that might
drop the success rate of the attack: (1) all pixels within the added
SRAF patterns change in the same direction making the pixel-based
gradient methods less optimal and (2) the attack flow only inserts
SRAFs, whereas more effective attacks may involve SRAF removal.

To address emerging threats to deep learning in EDA, we investi-
gate the risk to state-of-the-art deep learning-based layout hotspot
detectors under practical attacking scheme. We propose an attack
algorithm that is carefully designed for layout hotspot detectors,
where we tackle the drawbacks of pixel-based gradient methods
with a novel group gradient method (GGM). This new attack sup-
ports both insertion and removal of perturbed SRAF patterns. The
proposed method is faster than prior approaches and offers a higher
attack success rate due to the efficient group gradient ascension.
Studying potential attacks will assist in the design of robust hotspot
detectors. This paper makes three contributions:

• A demonstration that state-of-the-art gradient-based adver-
sarial attack solutions are limited on layout hotspot detectors
due to the existence of design rules, and that DRC-clean at-
tacks result in sub-optimal adversarial examples.
• A novel fast group gradient method that significantly alle-
viates the optimality deviation problem of existing hotspot
detector attacks as well as increases the solution space by
allowing removal of SRAF patterns.
• A comprehensive evaluation on a state-of-the-art hotspot
detector [1] for legacy node via patterns with model-based
SRAFs, showing that the trained model is vulnerable to GGM
generated adversarial layout samples.

The paper is organized as follows. Section 2 introduces concepts
related to adversarial attacks on hotspot detectors. Section 3 presents
our proposed method, algorithm, and discussions of the overall flow.
Section 4 covers experimental work and results and Section 5 con-
cludes the paper.

2 Preliminaries
In this section, we will introduce terminologies related to adversarial
attacks and formulate this attack on a CNN-based hotspot detector.

2.1 Via Layout Hotspot Detection
As illustrated in Figure 1, learning-based layout hotspot detectors
are used to facilitate the VLSI back-end design and sign-off flow by
estimating layout printability without OPC and lithographic simula-
tion. Learning model predicted hotspots will be fixed by feeding back
to previous design stage, while hotspot free designs are going into
followup manufacturing steps. As a case study, we focus on the CNN
models that predict potential defects in via patterns which contains
vias and model generated SRAFs. A trained CNN will output the
probability of a via clip being a hotspot. Clearly, missed detection
will result in defects after tapeout, which significantly challenges yield
and hence motivates the research on attacks of machine learning-based
hotspot detectors.

2.2 Adversarial Attack on a CNN-Based Hotspot
Detector

Adversarial input perturbation attacks pose a challenge to the ro-
bustness of DL-based systems [4, 6, 12, 14]. Motivated by promising
successes in incorporating machine learning throughout the CAD
flow [17], recent work by Liu et al. [8] has shown that adversarial
attacks extend beyond general-purpose image classification domains
into more constrained, esoteric applications, including lithographic
hotspot detection. This raises the need for robustness studies of DL,
especially in constrained settings where perturbations need to be
“semantically meaningful" [8].

In this work, we adopt a similar attack setting to [8], whereby
a malicious designer attempts to exploit the novel attack vector in
the supply chain [18] provided by incorporating DL-in-the-loop. By
exploiting robustness shortcomings in DL-based hotspot detection,
the malicious designer can sabotage the design flow, stealthily—their
aim is to prepare hotspot-laden layouts that satisfy design rules but
harbor lithographic defects. By carefully perturbing the layout, the
malicious designer can make a hotspot design appear non-hotspot
to the hotspot detector.

Adversarial attacks on a hotspot detector are either white-box or
black-box depending on how much information is accessible to an
attacker. In awhite-box attack, the attacker has access to details of the
trained CNN including the training set, network architecture, hyper-
parameters, and neuron weights. In a black-box attack, the attacker
can only query the trained detector and access the prediction.

Here we focus on white-box attacks as transferability of adver-
sarial examples make them applicable to black-box attacks [19]. The
attack objectives include making the CNN predict a sample of class
A as class Ā or predict Ā as A. We call these false-negative and false-
positive attacks, respectively. We focus on true-positive attacks that
make CNNs predict hotspots as non-hotspots, resulting in a yield
loss. Thus, an ideal adversarially perturbed version of an original
layout instance should: (1) be as close to the original instance as pos-
sible (for stealthiness/imperceptibility), (2) be in the same class as the
original instance, (3) make the trained CNN incorrectly classify the
adversarial version and (4) retain circuit functionality and satisfy de-
sign rules. Otherwise, the adversarial attacks can be discovered using
design rule checks and functional analysis.

2.3 Attack Metrics
We define the following terms to evaluate an attack method.

Attacking a CNN-based Layout Hotspot Detector Using Group Gradient Method ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Definition 1 (Accuracy [20]). The ratio between the number of
successfully predicted hotspot clips and the total number of hotspot
clips.

Definition 2 (Adversarial Layout Example). A hotspot layout clip
that can not be correctly identified by a trained neural networkmodel
due to small DRC-clean and function preserving perturbations.

With the above definitions, we formulate the problem of attacking
a CNN-based hotspot detector as follows.

Problem 1 (AttackHSD). Given a set of hotspot patterns and a
CNN-based hotspot detector (under white-box settings, i.e., with the
CNN architecture and neuron weights accessible), the objective of
AttackHSD is to make the minimal DRC-clean SRAF perturbations
on hotspot patterns such that they are still hotspots and the detection
accuracy on the perturbed hotspot dataset is minimized.

3 Algorithms
In this section, we will discuss the non-optimality of the pixel-based
gradient method (PGM) and show that the group gradient method
alleviates them.

3.1 Pixel-based Gradient Method (PGM) is not
Optimal

PGM for creating adversarial examples [4, 5, 14] focus on individual
pixels as attack targets. Using an example of 2-class classification
problem, the objectives are:

min | |R | |2F , (1a)
s.t. f (X + R;W) < 0, (1b)

f (X ;W) > 0, (1c)

where X is the original image, R corresponds to adversarial pertur-
bation and f is some trained binary classifier parameterized with
W . The sign of f indicates the class its input belongs to. f can be
the value difference between the softmax output of a 2-class neural
network. PGM attack applies gradient descent over the loss with
respect to the incorrect label, i.e.,

R = −γ
∂ f (X)

∂X
, (2)

X = X + R, (3)

where γ is a small coefficient that controls the perturbation level on
each pixel. Equation (2) and Equation (3) can be solved iteratively
until the trained model makes a wrong prediction. In the VLSI con-
text, gradient-based methods cannot generate adversarial samples
directly due to the DRC violations that they engender. Liu et al. [8]
tackle this by scanning over layout clips with valid SRAF patterns.
The gradients of all pixels in a valid SRAF region are summed as the
criteria to pick candidate perturbations Ri ’s with i in Equation (4):

i = arg max
k

∑
(x,y)∈Rk

∂ f (X)

∂X (x ,y)
, (4)

whereRk corresponds to the SRAF region in the perturbation matrix
Rk . (x ,y) is the coordinate representing each pixel. Multiple i’s might
be selected according to the sum of gradient value in a descending
order. Within each inserted SRAF, it is inevitable that some of the
pixels in that SRAF do not contribute towards flipping the label. This
is because an adversarial sample might change to non-adversarial

X

X1

X2

X4

X5

X7

X10X9
X11

X8

X6

X3

Perturbed Layout Adversarial Candidates

α2 = 1

α4 = 1

α11 = 1

Figure 2: Illustration of the proposed attack scheme as in For-
mula (5), with a solution of α2 = 1,α4 = 1 and α11 = 1.

after DRC legalization. Also, Equation (4) is not designed to “remove”
SRAFs as an attack option. In light of these shortcomings, we propose
the group gradient method for efficient and effective adversarial
layout sample generation.

3.2 Group Gradient Attack is Our Proposal
The group gradient attack targets layouts with adversarial DRC-
clean SRAF patterns, as shown in Formula (5).

min
α

L(α) = | |
∑
i
αiXi | |

2
F , (5a)

s.t. f (X +
∑
i
αiXi ;W) < 0, (5b)

αi + α j ≤ 1,∀i, j ∈ C, (5c)
αi ∈ {0, 1},∀i, (5d)

where Xi ’s are candidate SRAFs that can be added to or subtracted
from the original input X , α contains a set of coefficients that con-
trol whether a perturbation SRAF will be selected for adversarial
sample generation and C is the conflict set determined by design
rules. Similar to PGM adversarial attack objectives, Equation (5a)
tries to minimize the perturbation as much as possible when gener-
ating adversarial examples. We also have Equation (5b) to ensure an
adversarial sample can successfully fool the neural networks defined
as f (·;W). Equation (5c) guarantees the perturbed SRAFs will not
violate design rules with existing SRAFs, while Equation (5d) makes
the problem formulation practical, i.e., there will be either a shape
(represented as 1) or spacing (represented as 0) in the layout. We
visualize the perturbation scheme in Figure 2 with each perturbation
matrix Xi containing one SRAF shape.

3.2.1 Generate Candidates for Perturbation. Before deriving a math-
ematical solution for this formulation, we introduce the perturbation
candidate generation flow that produces well-distributed and compli-
ant SRAF insertion candidates. From Formula (5), a good adversarial
sample generator relies on SRAF perturbation candidates. We pro-
pose Algorithm 1 to generate DRC-clean perturbation candidates
that are evenly distributed around via shapes (illustrated in Figure 3).
The algorithm has two parts: (1) Identify SRAFs in X as removal
candidates (lines 1–8); (2) Scan over the clip and check for insertion
candidates (lines 12–17) that will not intersect with each other or
existing shapes in X . These are added into X (lines 19–21).
3.2.2 Numerical Optimization. Formula (5) is not easy to solve as
it is non-convex, discrete, and has a complex objective function
and constraints. To apply suitable numerical solutions, we relax

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Yang et al.

X1 X2 X3

X4

X7

X5 X6

X9

X8
X10

X11 X12 X13

(a) Mass Candidates

X1 X2 X3

X7 X8

X11 X12 X13

X

(b) Legal Candidates

Figure 3: Visualization of perturbation candidate generation
X = {X1,X2,X3,X7,X8,X11,X12,X13}. Due to design rule viola-
tion with existing shapes {X4,X5,X6,X9,X10} will not be in-
cluded in the perturbation candidate set X.

Algorithm 1 Generate Candidate for Perturbation
Input: X , design rule, search step s;
Output: X;
1: X← ∅;
2: Generate a set of all shapes S in X ;
3: for S in S do
4: if S is a SRAF then
5: Xt ← X with all shapes removed except S;
6: X = X ∪ {−Xt };
7: x ← 0,y ← 0;
8: for x < X .shape[1] do
9: for y < X .shape[0] do
10: h ←U(40,90);
11: if h > 40 then
12: w ← 40;
13: else
14: w ←U(40,90);
15: Xt ← generate a matrix with size X .shape[1] ×

X .shape[0] and contains solo rectangle shape defined by (x ,y)
and (x + h,y +w);

16: if X +Xt is DRC clean then
17: X ← X +Xt ; X = X ∪ {Xt };
18: y ← y + s;
19: x ← x + s;
20: return X;

Equation (5d) into Equation (6) and make Formula (5) continuous,

0 ≤ αi ≤ 1,∀i . (6)

Using design rule constraints when generating candidates for pertur-
bation ensures an adversarial example that is DRC-clean, allowing
Equation (5c) to be trivial. This simplifies Formula (5),

min
α

Lcont(α) = | |
∑
i
αiXi | |

2
F , (7a)

s.t. f (X +
∑
i
αiXi ;W) < 0, (7b)

0 ≤ αi ≤ 1,∀i, (7c)

which requires approximately O(n2) FLOPs and O(n2) MEMOPs
with | |

∑
i αiXi | |

2
F as objectives. Here n is the dimension of an input

layout image and usually exceeds 1,000 to have enough information
for printability estimation [20, 21]. This brings much more overhead
than a medium sized CNN.

Because the goal is to generate adversarial examples, Equation (5b)
is somehow playing a more important role than Equation (5a), which
leaves space to circumvent the complicated objectives. We hence
replace Equation (5a) with an approximation in Formula (8), which
reduces the computational overhead of the objectives knowing the
number of Xi ’s is around 100 with controllable error induced from
relaxation from Equation (7a) to Equation (8a), as claimed in the
following theorem.

min
α

Lsim(α) = | |α | |
2
2 , (8a)

s.t. f (X +
∑
i
αiXi ;W) < 0, (8b)

0 ≤ αi ≤ 1,∀i, (8c)

Theorem 1. Letα ∗cont andα
∗
sim be the optimal solution of Problem (7)

and Problem (8), respectively, then we have,

Lcont(α
∗
cont) ≤ Lcont(α

∗
sim), (9)

and,

Lcont(α
∗
sim) − Lcont(α

∗
cont)

≤ ||α ∗sim | |
2
0 · | |Xδ | |

2
F − ||α

∗
cont | |

2
0 · | |Xξ | |

2
F , (10)

where δ = argmaxi |e⊺Xie | and ξ = argmini |e⊺Xie |.

The non-convexity and non-linearity of f makes it impossible to
obtain a closed form solution of Formula (8). We adopt Lagrangian
relaxation by embedding Equation (5b) into Equation (8a) yielding,

min
α

Llag(α , λ) = | |α | |
2
2 + λ f (X +

∑
i
αiXi ;W), (11a)

s.t. λ ≥ 0, 0 ≤ αi ≤ 1,∀i, (11b)

which can be solved by descending the gradient of Llag with re-
spect to α and λ. To ensure Equation (6) will always hold during
optimization, we introduce a sigmoid that forces αi ’s inside [0, 1]

αi =
1

1 + e−βi
, βi ∈ R,∀i . (12)

The variables can be updated as follows,

β
(t+1)
i = β

(t)
i −

∂L
(t)
lag

∂α
(t)
i

∂α
(t)
i

∂β
(t)
i

= β
(t)
i − (2α

(t)
i + λ

∂ f

∂α
(t)
i

)α
(t)
i (1 − α

(t)
i),∀i, (13)

λ(t+1) = λ(t) − f (X +
∑
i
α
(t)
i Xi ;W), (14)

where ·(t) refers to the variable in the t-th updating step.
Since we consider all pixels in each perturbation candidate re-

gion during optimization, we call this adversarial sample generation
method the group gradient method (GGM). We present the adversarial
via layout generation flow in Algorithm 2. Given a hotspot patternX
that is correctly identified by f , we generate a set of candidate SRAF
perturbations (insertion and removal) (line 1). Decision variables β
and λ are initialized for good convergence (line 2) and are updated
with gradient descent (lines 3–16). When f starts to produce nega-
tive predictions, we generate the adversarial sampleX ′ by gradually

Attacking a CNN-based Layout Hotspot Detector Using Group Gradient Method ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

adding perturbations with largest α (t)k to X until f makes a wrong
prediction on the perturbed X ′ (lines 4–15).

Algorithm 2 Group Gradient Method

Input: A trained neural network model f (·;W), a hotspot pattern
X that is correctly identified by f , maximum number of SRAFs
can be changed smax, maximum optimization iteration tmax;

Output: An adversarial pattern X ′;
1: Generate SRAF perturbation candidates X={X1,X2, ...,Xm }

from Algorithm 1;
2: Initialize β ∈ Rm and λ ∈ R+; ▷ According to (11) & (12)
3: for t = 1, 2, ..., tmax do
4: if f (X +

∑
i α
(t)
i Xi ;W) < 0 then

5: X ′ ← X ;
6: A(t) ← {α

(t)
i , i = 1, 2, ...m};

7: for s = 1, 2, ..., smax do
8: k ← arg maxA(t);
9: A(t) = A(t)/{α

(t)
k };

10: X ′ ← X ′ +Xk ;
11: if f (X ′) < 0 then
12: return X ′;
13: Update β and λ; ▷ According to (13) & (14);

3.2.3 Discussion. In the group gradient method, Algorithms 1 and 2
work together to generate adversarial examples with minor changes
to original SRAF-via patterns. The initial values of β and λ signif-
icantly affect the convergence of Algorithm 2. Because the pertur-
bation is expected to be included in X gradually, α should be close
to zero at the beginning of the optimization flow. It should be also
noted that we do not conduct explict rounding of α when deter-
mining the final perturbation candidates, because we will gradually
add these perturbations in the design until the prediction label flips.
Therefore, we require β to be initialized to a negative value while
making sure that it does not slow down convergence by being too
negative for small gradients of the sigmoid function. The initializa-
tion of α almost guarantees that f (X +

∑
i αiXi ;W) ≈ f (X ;W) is

positive at the beginning, which hence leads to λ(t+1) < λ(t) when t
is small. Since Equation (13) has shown the risk of failure when λ is
too small to propagate the gradient of f back to β , it is recommended
to have λ initialized with a relatively large positive value. This makes
Equation (11a) more like a general minimization problem with L2
regularization instead of the method of Lagrangian multipliers. The-
orem 1 also tells us that the relaxation gap from Lcont to Lsim will
be efficiently narrowed if (1) we insert as few SRAFs as possible,
according to Equation (10) (2) inserted perturbations are with fewer
shape variations.

3.3 Overall Flow
Figure 4 depicts the flow of the group gradient method, where a
hotspot pattern combined with its perturbation candidates feed into
the trained CNN model. The optimization engine back-propagates
the error gradients to the combination coefficients βi ’s which finally
guide the insertion of perturbation candidates. This flow has three
advantages compared to the PGM approach [8]. (1) Candidate per-
turbations are generated by scanning over the entire clip ensuring a
comprehensive solution space. (2) GGM optimizes toward DRC-clean

Hotspot
Pattern

3.2.1
SRAF

Candidate

3.2.2
Numerical

Optimization

Adversarial
Example

Figure 4: Overall flow of the proposed GGM.

(a) Step-1 (f = 0.4984) (b) Step-2 (f = 0.0835) (c) Step-3 (f = −1.043)

Figure 5: Step view of adversarial layout generation.

perturbation circumventing post-processing and potential deviation
from optimality. (3) Gradient back-propagation and perturbation
candidate determination steps make the framework robust when
more changes are used to create adversarial layout examples.

4 Experimental Results
In this section, we present the results and some ablation studies that
show effectiveness and efficiency of the group gradient method.

We implement GGM and PGM using Python and Tensorflow
[22]. We test these methods on an Intel platform with GTX 1080 Ti
graphics processing unit. For the via hotspot data, we use legacy node
via designs that are verified and simulated using Mentor Graphics
CalibreDesign For Manufacturability tool suite [23]. We generate
adversarial examples based on four groups of 400 hotspot clips and
a CNN model trained on 34356 via layout clips with 2454 hotspots.
We use the same CNN architecture and training strategies as in [20].
When generating an adversarial example, we initialize βi ’s with -10
and λ with 105 for reasons discussed in Section 3.2.3. We set tmax
to 6 and smax to {1, 2, 3} to evaluate the performance of the method
under different perturbation tolerances.

We launch adversarial attacks on four hotspot groups using GGM.
Results for the three SRAF perturbation constraints smax are listed in
Table 1. Column “ID” shows the four groups of hotspot patterns. Col-
umn “GGM” corresponds to results using GGM and column “PGM”
refers to PGM in [8]. Minor column “Acc (%)” lists the hotspot detec-
tion accuracy (definition 1) and minor column “AE” corresponds to
the number of adversarial layout examples produced (definition 2).

GGM can deceive the trained CNN model easily by altering the
original hotspot layout with at most one SRAF. The detection ac-
curacy drops from 83.94% to 61.81%. In contrast, using PGM [8]
drops the detection accuracy by ∼ 10% and generates only half as
many adversarial examples as the GGM. This is because PGM is non-
optimal when legalizing DRC-clear SRAFs according to pixel-based
gradients. When we gradually increase the allowable perturbations
from smax = 1 to smax = 3, GGM and PGM exhibit an increased
attack success rate. However, GGM is superior as it results in > 10%
more accuracy drop relative to PGM. Figure 5 shows the step-by-step

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Yang et al.

Table 1: Group gradient method (GGM) vs. state-of-the-art pixel gradient method (PGM [8]).

ID Origin GGM (smax = 1) PGM (smax = 1) GGM (smax = 2) PGM (smax = 2) GGM (smax = 3) PGM (smax = 3)

Acc (%) Acc (%) AE Acc (%) AE Acc (%) AE Acc (%) AE Acc (%) AE Acc (%) AE

1 81.50 61.50 73 71.00 38 51.50 110 64.00 63 46.25 131 56.25 93
2 89.25 64.50 92 78.75 39 52.25 137 66.75 87 45.75 161 59.50 114
3 85.25 64.75 78 74.50 40 53.75 119 65.25 76 47.00 146 55.00 117
4 79.75 56.50 91 69.50 40 47.75 125 60.50 74 44.00 140 53.50 101

Avg. 83.94 61.81 83.50 73.44 39.25 51.31 122.80 64.13 75.00 45.75 144.50 56.06 106.3

smax = 1 smax = 2 smax = 3

4

8

12

A
tta

ck
Ti
m
e
/C

lip
(s
)

GGM PGM [8]

Figure 6: Runtime comparison: GGM vs PGM.

generation of an adversarial via layout where SRAFs in the original
design are perturbed according to optimized βi ’s.

Figure 6 summarizes the efficiency of GGM and PGM using aver-
age generation time per clip. PGM is faster than GGMwhen smax = 1
with adversarial example generation time of 7.83s per clip compared
to 11.35s per clip for GGM. However, GGM exhibits robustness with
increasing smax. This is because the overall runtime overhead in
GGM is dominated by updating β and λ, which is upper-bounded
by tmax. PGM, however, requires more efforts to search for effective
perturbation locations, whose computational overhead scales up
prominently.

5 Conclusion
In this paper, we examine the risks of deep learning-based lithogra-
phy hotspot detectors assuming a practical adversarial attack sce-
nario. We explain that adversarial example generation employing a
conventional pixel-based gradient method deviates from the optimal
when making legal perturbations. To present an efficient and suc-
cessful attack, we recommend the group gradient method that makes
DRC clean perturbations by solving an unconstrained optimization
problem with an objective function that is differentiable. This can
produce successful attacks with minimal perturbations. Experimen-
tal results show the superiority of the attack solution over the pixel
gradient method and confirm the susceptibility of state-of-the-art
CNN-based hotspot detectors. We expect this study will spur re-
search in defenses against adversarial layout examples culminating
in robust machine learning solutions in VLSI design and sign-off
flow.

6 Acknowledgment
This work is partially supported by The Research Grants Council of
Hong Kong SAR (No. CUHK14209420).

References
[1] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout hotspot detection

with feature tensor generation and deep biased learning,” IEEE TCAD, vol. 38, no. 6,
pp. 1175–1187, 2019.

[2] W. Ye, Y. Lin, M. Li, Q. Liu, and D. Z. Pan, “LithoROC: lithography hotspot detection
with explicit ROC optimization,” in Proc. ASPDAC, 2019, pp. 292–298.

[3] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask optimization with
lithography-guided generative adversarial nets,” in Proc. DAC, 2018, pp. 131:1–
131:6.

[4] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in Proc. ICLR. IEEE, 2015, pp. 1–11.

[5] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate
method to fool deep neural networks,” in Proc. CVPR, 2016, pp. 2574–2582.

[6] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” in Proc. ICLR, 2017.

[7] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and trends® in
Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[8] K. Liu, H. Yang, Y.Ma, B. Tan, B. Yu, E. F. Y. Young, R. Karri, and S. Garg, “Adversarial
PerturbationAttacks onML-Based CAD: ACase Study onCNN-Based Lithographic
Hotspot Detection,” ACM Trans. Des. Autom. Electron. Syst., vol. 25, no. 5, Aug.
2020.

[9] C. Szegedy,W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proc. CVPR, 2015, pp. 1–9.

[10] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in Proc. ECCV, 2014, pp. 818–833.

[11] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proc. ICML, 2010, pp. 807–814.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[13] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale
optimization,” Mathematical programming, vol. 45, no. 1-3, pp. 503–528, 1989.

[14] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,”
arXiv preprint arXiv:1611.01236, 2016.

[15] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny
images,” Citeseer, Tech. Rep., 2009.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual
recognition challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp.
211–252, 2015.

[17] A. B. Kahng, “Machine Learning Applications in Physical Design: Recent Results
and Directions,” in International Symposium on Physical Design - ISPD ’18. Mon-
terey, California, USA: ACM, 2018, pp. 68–73.

[18] K. Basu, S. M. Saeed, C. Pilato, M. Ashraf, M. T. Nabeel, K. Chakrabarty, and R. Karri,
“CAD-Base: An Attack Vector into the Electronics Supply Chain,” ACM Trans. Des.
Autom. Electron. Syst., vol. 24, no. 4, pp. 38:1–38:30, Apr. 2019.

[19] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples,” arXiv preprint
arXiv:1605.07277, 2016.

[20] H. Yang, J. Su, Y. Zou, B. Yu, and E. F. Y. Young, “Layout hotspot detection with
feature tensor generation and deep biased learning,” in Proc. DAC, 2017, pp. 62:1–
62:6.

[21] A. J. Torres, “ICCAD-2012 CAD contest in fuzzy pattern matching for physical
verification and benchmark suite,” in Proc. ICCAD, 2012, pp. 349–350.

[22] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al., “TensorFlow: A
system for large-scale machine learning,” in Proc. OSDI, 2016, pp. 265–283.

[23] Mentor Graphics, “Calibre verification user’s manual,” 2008.

