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ABSTRACT
In this paper we present EPIC, an efficient and effective pre-
dictor for IC manufacturing hotspots in deep sub-wavelength
lithography. EPIC proposes a unified framework to com-
bine different hotspot detection methods together, such as
machine learning and pattern matching, using mathemati-
cal programming/optimization. EPIC algorithm has been
tested on a number of industry benchmarks under advanced
manufacturing conditions. It demonstrates so far the best
capability in selectively combining the desirable features of
various hotspot detection methods (3.5-8.2% accuracy im-
provement) as well as significant suppression of the detection
noise (e.g., 80% false-alarm reduction). These characteris-
tics make EPIC very suitable for conducting high perfor-
mance physical verification and guiding efficient manufac-
turability friendly physical design.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit]: Design Aids

Keywords
Design for Manufacturability, Lithography Hotspots, Meta
Classification, Machine Learning, Pattern Matching

1. INTRODUCTION
Due to the widening gap between the continuous scal-

ing of feature-size and the limited lithography capability [1],
the semiconductor industry is critically challenged in both
IC design and manufacturing. To address these challenges,
design-aware manufacturing and manufacturing-friendly de-
sign techniques have been developed to avoid high variability
design patterns (process hotspots) and to ensure high prod-
uct yield at post Silicon stage. During such processes, print-
ing masks are usually re-targeted and optimized through
powerful resolution enhancement techniques (RETs) such
as Sub-Resolution Assist Features, Optical Proximity Cor-
rection, etc. At the same time, various merging lithog-
raphy technologies are under active research and develop-
ment, including Double (Multiple) Patterning lithography,
E-beam lithography and EUV lithography. However, these
technologies still suffer from different degrees and types of
printing variabilities, therefore layout dependent lithogra-
phy hotspots remain a challenging issue.

To optimize the masks of a design for better printability,
one approach is to first locate the lithography hotspots in a
layout, then fix them in a construct-by-correction manner.
Meanwhile in recent years, CAD methodologies have evolved
to incorporate RET models into early design stages (e.g.,
detailed routing) to avoid lithography-unfriendly patterns
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in a correct-by-construction manner [2–6]. Consequently,
fast and accurate lithography hotspot detection becomes a
common and critical issue for a wide range of applications
in both design and manufacturing.

However, the quests for such detection methods have been
critically challenged in many aspects: (1) designs are getting
more complex; (2) under the evolving manufacturing condi-
tions, the number of real hotspots is only a very small frac-
tion of the entire design, making it very difficult to achieve
high detection accuracies and low false-alarms simultane-
ously; (3) detections are seriously run-time constrained due
to short turn-around-time, etc.

Current state-of-the-art hotspot detection methods mainly
fall into 3 categories. (1) lithography simulations are very
accurate but CPU intensive. (2) Machine learning tech-
niques [7–13] with good noise suppression capability are
still in need of further accuracy improvement. (3) Pattern
matching techniques [14–17] that are very good at detect-
ing pre-characterized hotspot patterns lack the capability to
predict never-before-seen hotspots. This is especially prob-
lematic when new types of designs are involved after the
original pattern library is built.

Recently in [18], a hotspot detection flow was proposed
to hybridize the strengths of machine learning models and
pattern matching models. Such a flow feeds data samples to
a pattern matcher first, then employs machine learning clas-
sifiers to further examine the non-hotspot data set produced
by the pattern matcher. It demonstrates good performance
trade-off between detection accuracies and false-alarms sup-
pression compared to the previous works. However, its ad-
hoc nature can make the performance fine-tuning and opti-
mization processes very costly.

In order to better address the problem, we propose EPIC :
an efficient meta-classification formulation (Fig. 1) to com-
bine various hotspot detection techniques into a unified and
automated framework that selectively adopts their strengths
and suppresses their drawbacks. Based on the theoretical
framework in Order Statistics [19], we propose a new CAD
flow with different types of base classifiers and optimize the
flow via constrained quadratic programming.

The rest of the paper is organized as follows. In Sec-
tion 2 we further motivate the meta-classification method-
ology and summarize our main contributions. Section 3 de-
tails the overall CAD flow together with an overview of the

Pattern Matching Methods
Good for detecting previously

known types of hotspots

Machine Learning Methods
Good for detecting new/previously

unknown types of hotspots

A New Unified Formulation
Good for detecting all types of hotspots
with advantageous accuracy/false-alarm

(The Meta-Classifier)

Figure 1: A new unified formulation for combining
various lithography hotspot detection techniques
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Figure 2: Examples of lithography hotspot patterns

meta-classifier construction. Section 4 gives a brief descrip-
tion of several classes of building-block detection techniques,
followed by Section 5, where these techniques are combined
under the meta-classifier with mathematical programming
and optimization techniques. Section 6 presents the results
and analysis. Section 7 concludes the paper.

2. MOTIVATION AND CONTRIBUTIONS
In the previous section we discussed the need for a sys-

tematic and unified meta-classification methodology to se-
lectively combine certain features of multiple hotspot detec-
tion engines. In this section, we use an example to further
motivate such a meta-classifier.

Fig. 2 presents the printed images of 2 local regions from
certain design at 32nm technology node after applying RETs.
We can make several observations from Fig. 2(a) and (b).
First, there are various types of process hotspots, featur-
ing complex patterns related to line-ends, jogs, corners or
contacts, etc. Second, hotspot patterns suffer from different
amount of manufacturing variation, which is usually mea-
sured by the Edge Placement Error (EPE). Therefore by
setting different EPE thresholds, we can classify lithogra-
phy hotspots into multiple categories. This allows us more
efficiency to study the manufacturability and yield effects of
each category. We first define lithography hotspots:

Definition 1. Hotspot : A pattern (or part of a pattern)
in an IC design layout that suffers excessive EPE/variation
under lithography printing variation at fabrication stage.

The definition of lithography hotspots is dependent on the
EPE error tolerance of a design. Excessive EPE can lead to
electrical errors (parasitics variation, timing issues, etc.) or
even logic errors (shorts, opens, etc.). To avoid these issues
and assist design sign-off and manufacturing closure, lithog-
raphy hotspots should be properly predicted and avoided
during early design stages with short turn-around-time. In
this paper, we use the following two targets to quantitatively
calibrate the prediction performance:

Definition 2. Hotspot Accuracy : The rate of correctly
predicted hotspots among the set of actual hotspots.

This rate characterizes the success rate of hotspot prediction
within the set of actual hotspots. We also use Hit to rep-
resent the actual count of correctly predicted hotspots, or
equivalently, the rate of Hotspot Accuracy percentage wise.

Definition 3. Hotspot False-Alarm : The rate of incor-
rectly predicted non-hotspots over the set of actual hotspots.

This rate represents the over-shoots of the prediction, i.e.,
the set of non-hotspots predicted incorrectly as hotspots.
We also use Extra to denote the actual count of such a set, or
equivalently, the rate of Hotspot False-Alarm in percentage.

Next we motivate a meta-classification flow to concur-
rently optimize Hit and Extra on top of powerful hotspot
prediction methods. During our prediction process, each
fragment geometry in the layout will be processed and an-
alyzed by multiple hotspot detection engines. Suppose we
input pattern i to a machine learning classifier ML and a pat-
tern matcher PM at the same time and the prediction results
are xML

i and xPM
i , respectively. xML

i takes certain value be-
tween -1 (non-hotspot) and +1 (hotspot), while xPM

i usu-
ally is either -1 (non-hotspot) or +1 (hotspot). Thus the
simplified meta-classification problem becomes the follow-
ing motivational problem:

Given decisions xML
i and xPM

i over the same design
pattern i, decide the final hotspot target label T meta

i

to simultaneously maximize Hotspot Accuracy and
minimize Hotspot False-Alarms.

First, it is easy to see that T meta
i is +1 if both xML

i and
xPM

i are (very close to) +1; T meta
i is -1 if both xPM

i and xML
i

are (very close to) -1. Second, in the cases when xML
i and

xPM
i disagree with each other, we introduce the weighting

functions fML(x) and fPM (x) to adjust the weights and
improve detection performance.

T meta
i = �

meta{xML
i · fML(xML

i )+xPM
i · fPM (xPM

i )} (1)

If we define T meta
i as in Eqn.(1) above, we can pre-calibrate

the weighting functions with accurate lithography simula-
tions as golden targets. Then we can use the calibrated
functions onto new layout fragments by applying Eqn.(1),
where �

meta is a threshold cut-off function defined as fol-
lows,

�
meta(x) =

{
+1 (hotspot), if x≥θ
−1 (nonhotspot), if x<θ

(2)

Such a formulation combines machine learning and pattern
matching techniques meanwhile preserves generality to cover
both cases, as if fML(x)=1 and fPM (x)=0, then Eqn.(1)
degenerates into a machine learning classifier ML; similarly
for a pattern matcher PM. Therefore the solution to the
above motivational problem lies in the configuration and op-
timization of the weighting functions such that the overall
hotspot prediction performance exceeds each individual pre-
dictor. Built upon such a motivation, this paper proposes
a systematic CAD flow to construct and optimize a meta-
classifier integrating multiple types of powerful hotspot pre-
diction techniques (known as disparate base classifiers). Our
key contributions are as follows,

• We propose for the first time a unified meta-classifier
to seamlessly combine the advantages of various hotspot
detection techniques for enhanced accuracy and re-
duced false-alarms.

• We develop high performance hotspot detection en-
gines as base classifiers to leverage state-of-the-art ma-
chine learning and pattern matching techniques.

• We employ Quadratic Programming techniques to achieve
efficient configuration and performance optimization of
the meta-classifier.

• We perform exhaustive assessment on the proposed
method using various industry-strength benchmarks
under advanced RET and manufacturing conditions.
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Figure 3: The overall CAD flow proposed for hotspot detection based on meta-classification formulation

3. META-CLASSIFICATION OVERVIEW

3.1 Overall Flow
Fig. 3 shows the overall flow for calibrating and applying

the meta-classifier. It consists of 2 steps, the calibration and
the detection phases. Before going into details, we introduce
the following key components of the proposed flow.

Definition 4. Base Classifier : An individual hotspot clas-
sifier that is optimized under certain performance metric,
such as detection accuracy, or false-alarms, or adaptivity to
new unknown designs, etc.

Definition 5. Weighting Function : A function that prop-
erly weights and compensates the prediction result of a base
classifier such that the overall combinations of individual
base classifiers can be configured for better accuracy and
smaller noise.

Definition 6. Meta-Classifier : A classifier that is for-
mulated and optimized via proper combinations of multiple
base classifiers under a set of weighting functions to further
enhance hotspot prediction performance.

According to Fig. 3, Phase1 is the calibration stage where
the base classifiers and the weighting functions are config-
ured and optimized using training data sets. This stage
requires the supervision of accurate lithography simulators
or real silicon debugging data. Phase2 is the stage when
the established meta-classifier is applied onto new testing
data sets. This stage operates at very high speed without
accurate lithography simulations.

3.2 Constructing the Meta-Classifier
The construction and optimization of the meta-classifier

are the two key contributions of this paper. In this section
we give an illustrative overview of the proposed methodol-
ogy, leaving detailed analysis to Section 5.

The development of a meta-classifier is illustrated in Fig. 4,
which is mainly divided into 3 levels. For every layout pat-
tern geometry i, certain key hotspot features are extracted
then fed into each base classifier. Base classifiers generate
the prediction decisions (xi’s) of pattern i, then the weight of
each classifier’s decision is generated by the weighting func-
tions. The final meta-decision is the weighed sum of base
classifiers. Generalizing from the motivational example, we

define the following:

T meta
i = �

meta{
N∑

k=1

x
(k)
i · f (k)(x

(k)
i )} (3)

where T meta
i is the final decision value of pattern i, N is

the total number of base classifiers, f (k)(·) is the weighting

function of the kth base classifier, x
(k)
i is the output from

the kth base classifier when pattern i is the input. �
meta is

the same as in Eqn.(2).

x

Weighing Functions

-1 +1
x

-1 +1

x

-1 +1

Input pattern i, where i = 1, 2, … M

Feature set 1 Feature set 2 Feature set N

Classifier 1 Classifier 2 Classifier N

………

………

………

Base Classifiers

Disparate feature sets

Decision Decision  Decision  

………

Output meta-decision         for pattern i, where i = 1, 2, … M

(1)
ix (2)

ix
( )N
ix

( )(1)f x ( )(2)f x ( )( )Nf x

( )(1) (1) (1)
i ix f x

( )(2) (2) (2)
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Figure 4: Meta-classifier construction via a combi-
nation of disparate base classifiers

By examining the corner cases, we notice that if the weight-
ing function of SVM base classifier fSV M (x) ≡ 1, and
all other base classifiers have 0 value weighting functions,
then the meta-classifier degenerates into a SVM base classi-
fier. Therefore by adjusting the weighting functions we can
achieve a performance trade-off between different types of
hotspot detection techniques, such as machine learning and
pattern matching. In the following sections, we will discuss
the development and optimization of each classifier involved
in the proposed flow.

4. CONSTRUCTING BASE CLASSIFIERS
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In this section, we elaborate the base classifiers using
machine learning techniques (Artificial Neural Network and
Support Vector Machine) and pattern matching techniques.

4.1 Artificial Neural Network Classifiers
The ANN base classifier is built via fine tuning [10, 13].

We briefly describe the formulation and our specific feature
contents as follows.

objective : minimize{
N∑

p=1

Ep} w.r.t ωij , ωjk (4)

Ep =
1

2
[outp − yp]2 (5)

outp = fout{
∑

j

ωjk · fhid(
∑

i

V i
p · ωij)} (6)

∂Ep

∂ωjk
= (outp − yp) · fhid{

∑
i

V i
p · ωij} (7)

∂Ep

∂ωij
= (outp − yp) · ωjk · V i

p · (1 + outj
hid)(1 − outj

hid) (8)

fhid =
2

(1 + e−2x)
− 1, fin = fout = x (9)

sign func(x) =

⎧⎨
⎩

−1 x < 0
0 x = 0

+1 x > 0
(10)

Estp̃ = �
ann{fout[

∑
j

ωjk · fhid(
∑

i

V i
p̃ · ωij)]} (11)

An ANN classifier (predictor) works by calculating an out-
come outp for a data sample vector Vp based on established
weights (ωjk) and biases assigned to a neural network struc-
ture, such that the summed square error is minimized ac-
cording to Eqn.(4) and that outp approximates certain tar-
get yp. The models shown here are customized with single
hidden layer of neurons, with transfer functions denoted as
fhid. Inputs Vp to the ANN kernels are the extracted feature
vector samples labeled with values (yp) indicating hotspot
or nonhotspot patterns (these values can be continuous for
variability prediction). We use p to represent feature vector
index with p = 1 to N , V i

p denotes the ith element of vector
Vp, i = 1 to M , where M is the total number of features
for each sample vector. We use fin and fout to represent
input and output layer transfer functions, and index i, j, k
to indicate neuron indices in the input, hidden and output
layer respectively. �

ann is the threshold adjustment for per-
formance fine-tuning. Once the ANN base classifier is fully
calibrated, we can apply it to estimate Estp̃ according to
Eqn.(11) without using costly lithography simulations.

4.2 Support Vector Machine Classifiers
Inside the meta-machine block, we employ a C-class Sup-

port Vector Machine (SVM) classifier fine-tuned based on
[10,13]. We brief the problem formulation as follows.

objective : minimize{f(α) =
1

2
αT Zα − eT α} w.r.t α

(12)

subject to : 0 ≤ αi ≤ C, i = 1, ..., n (13)

yT · α = 0 (14)

K(Vi, Vj) = exp{γ · ‖Vi − Vj‖2} (15)

slope func(x) =

⎧⎨
⎩

0 x ≤ 0
x 0 < x < C
C x ≥ C

(16)

Estp̃ = �
svm{

∑
i

αiyiK(Vp̃, Vi) + bias} (17)

Given Vi, i=1 to M sample vectors with n number of fea-
tures, with label yi (either hotspot or non-hotspot for 2-class
SVM). e is a vector of all 1’s. C is a pre-set upper bound
to constrain feasible regions for hotspot detection under real
manufacturing conditions. Z is n by n positive semi-definite
matrix defined as Zij = yiyjK(Vi, Vj), where K(Vi, Vj) is
defined in Eqn.(15) as the kernel function. α is the N ele-
ment weight vector for Vp’s. �

svm is a threshold function to
adjust and fine-tune the estimation performance of Estp̃.

The configuration of SVM base classifiers is achieved through
performing a set of algorithms over the calibration data Vp’s
to identify the support vectors and weight coefficients that
construct a classification hyper-plane with maximized sepa-
ration margin. Once configured, we apply the SVM model
to evaluate new data samples according to Eqn.(17) without
costly lithography simulations.

4.3 Pattern Matching Classifiers

(a) (b) (c)

(d) (e) (f)

Figure 5: Example patterns in PM base classifiers

We explored the current state-of-the-art methods [14–16]
and came up with several major classes (each with hundreds
of specific hotspot structures) of pattern matching base clas-
sifiers to cover various types of lithography hotspots, relat-
ing to special line-ends, corners, jogs, contact patterns, etc.

Some example hotspot patterns are illustrated in Fig. 5.
In particular, we have fine-tuned the pattern matchers to
have broader pattern coverage rather than performing ex-
act matching. As a result, the established pattern matchers
demonstrate very good hotspot accuracies onto new data
sets. Obviously, the penalty of such fine-tuning is the con-
sequent high false-alarms. However, as we will see later in
Section 6, the meta-classifier performs well in suppressing
the false-alarms of such a PM base classifier.

5. OPTIMIZING META-CLASSIFICATION
Given the proposed meta-classifier in Fig. 4, in this sec-

tion we first analyze the Mean-Square-Error of the meta-
classifier introduced by the errors/noises of the weighting
functions. Then we propose mathematical programming
techniques to optimize the weighting functions to minimize
the detection error.

5.1 Meta-Classification Error Analysis
Depicted in Fig. 6 are 2 sets of curves. Assume the black

curves are the optimal weighting functions and the inter-
sected point threshold* is the optimal cutoff value for �

meta(·)
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(this happens under 1:1 importance ratio between hotspot
accuracy improvement and hotspot false-alarm reduction).
Suppose the dotted curves are the sub-optimal weighting
functions for the ith and jth base classifiers. In this case,
the derived cut-off threshold becomes threshold*+error, thus
the meta-classification flow has an error:

MSEnoise =

∫
x

{
N∑

k=1

f (k)(x) · x −
N∑

k=1

p(k)(x) · x}2dx (18)

=

N∑
k=1

∫
x

{[f (k)(x) − p(k)(x)] · x}2dx (19)

=

N∑
k=1

∫
x

{[e(k)(x)] · x}2dx (20)

e(k)(x) = f (k)(x) − p(k)(x) (21)

From the analysis above, we observe that the classification
error accumulates among all base classifiers with a quadratic
index on each term, should noise/error occur in the weight-
ing functions. Therefore, it is critical to find the optimal
weighting functions to ensure the meta-classifier ’s noise ro-
bustness. In the following section, we will explore the math-
ematical formulation that optimizes the weighting functions
given certain calibration data.

5.2 Weighting Function Optimization
We first define the meta-classification Mean-Square-Error

over the entire calibration data set under the supervision of
accurate lithography simulations:

MSEmeta =
1

M
·

M∑
i=1

‖
N∑

k=1

x
(k)
i · p(k)(x

(k)
i ) − T litho

i ‖2 (22)

where M is the total number of calibration samples and
T litho

i is the baseline hotspot characterization result given
by accurate lithography simulator. Table 1 details the short-
hand terms used in our mathematical formulation.

To minimize the Mean-Square-Error among the sample
space meanwhile avoid over-fitting of the training data set,
we define the performance optimization formulation:

To minimize : MSEmeta + PCost w.r.t p(k)(x
(k)
i ) (23)

PCost = λ0

∑
i

∑
k

(p(k)(x
(k)
i ) − const)2 (24)

where λ0 is a non-negative penalty applied to constrain the
calibration process such that the weighting functions are
bounded within certain proximity of a constant parameter.
This will prevent numerical instability and preserve detec-
tion generality of the weighting functions when applied to

Table 1: Variables and terms in the QP formulation
Terms Descriptions

N Number of the base classifiers
M Number of meta-machine calibration sample data
i Index of each input sample pattern
k Index of each base classifier

Prediction result from the base classifier k

x
(k)
i given input data sample i

f(k)(x
(k)
i ) Value of perfect weighting func. f(k)(·) at x

(k)
i

p(k)(x
(k)
i ) Value of non-perfect weighting func. p(k)(·) at x

(k)
i

L(k) Total quantization levels of base classifier k
l Index of each quantization level

Quantized weight value from f(k)(·)
p
(l)
k at level l of the base classifier k, pl

k ∈ [1, L(k)]
The quantization mapping function:

Θ(·) x
(k)
i → quantization level index l

Prediction result given by base classifier k at

α
(l)
k (i) level l with input sample i (set to 0 if NULL)

i.e., the value to which p
(l)
k is to be applied

Ltotal Total number of independent p
(l)
k

Q A definite positive matrix ∈ �Ltotal×Ltotal

c A vector ∈ �Ltotal×1

Variable vector for the
X quadratic programming formulation, where

X = [p
(1)
1 ...p

(l)
k ...p

(L(N))
N ]T ∈ �Ltotal×1

T meta
i Meta-machine prediction result for input sample i

Prediction baseline for input sample i

T litho
i by accurate lithography simulator
λ0 Parameter to avoid over-fitting/instability

new testing data. Such proximity is adjustable by varying
λ0.

To assist numerical optimization, we quantized the origi-
nal continuous weighting functions p(1)(x) ∼ p(N)(x), each
into L(k) levels, with each level being a single weight value

denoted as p
(l)
k , where l ∈ [1,L(k)].

After the weighting function quantization process, we have
the following modified formulation:

To minimize : MSE + PCost w.r.t p
(l)
k (25)

MSE =
1

M

M∑
i=1

‖
N∑

k=1

p
(Θ(x

(k)
i ))

k · x(k)
i − T litho

i ‖2 (26)

PCost = λ0

N∑
k=1

L(k)∑
l=1

(p
(l)
k − 1)2 (27)

where p
(l)
k ’s are the optimization variables (quantized weight

values) for fine-tuning the overall classification quality. In
PCost, we set the constant parameter to 1.0 since it is the
boundary factor of numerical up-scaling and down-scaling.
Due to the PCost term, each weight variable will be scat-
tered not far away from 1.0 meanwhile be optimized under
predication error minimization objective. This benefits us
in two ways: first, avoiding close to zero weights for the cali-
bration data yields better classification generality over test-
ing data; second, avoiding large weights can maintain good
balance among hotspot features meanwhile prevent numeric
instability over testing data. For further details of the no-
tations please refer to Table 1.

Finally we can write the following quadratic programming
problem formulation:

f(x) =
1

2
XT QX + cT X (28)

X ≥ lb (29)
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lb = [0 0 0 0 0 ... 0]T ∈ �Ltotal×1 (30)

where X is the optimization variable vector defined as fol-
lows,

X = [p
(1)
1 ... p

(L(1))
1 ... p

(l)
k ... p

(L(N))
N ]T ∈ �Ltotal×1 (31)

where Ltotal is the total number of p
(l)
k ’s:

Ltotal =

N∑
k=1

L(k) (32)

Matrix Q is defined as follows,
Q =⎛

⎜⎜⎜⎜⎜⎜⎜⎝

β
(1)
1 (i) γ

(1,2)
1,1 (i) . γ

(1,l)
1,k (i) γ

(1,L(N))
1,N (i)

γ
(2,1)
1,1 (i)

. . . . . .

. . β
(L(1))
1 (i) . .

γ
(l,1)
k,1 (i) . . β

(l)
k (i) .

γ
(L(N),1)
N,1 (i) . . . β

(L(N))
N (i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(33)
Vector c is defined as the linear term coefficients vector

from the quadratic formulation objective:

c = [ω1
1(i) · · ·ωL(1)

1 (i) · · ·ω(l)
k (i) · · ·ωL(N)

N (i) ]T (34)

where the related terms are defined as follows, and α
(l)
k (i) is

an intermediate term to link the base classifier ’s prediction

values with p
(l)
k , i.e., α

(l)
k (i) is the x

(k)
i value that falls into

level l of the quantized weighting function relating to the
base classifier k. Given certain i and k, if there is no output

values corresponding to level l, then α
(l)
k (i) is set to 0.

β
(l)
k (i) =

2

M

M∑
i=1

[α
(l)
k (i)]2 + 2λ0 (35)

γ
(n,l)
m,k (i) =

2

M

M∑
i=1

α(n)
m (i) · α(l)

k (i) (36)

ω
(l)
k (i) = − 2

M

M∑
i=1

T litho
i · α(l)

k (i) − 2λ0 (37)

The values and parameters in the above equations are de-
rived properly so that the original problem in Eqn.(23) be-
comes the minimization of a quadratic problem in Eqn.(28).
Once it is solved, we apply the resulting weighting functions
over some calibration data to properly select a threshold
function �

meta(·) to further balance hotspot accuracy and
hotspot false-alarm. After calibration, the meta-classifier
will be tested over new design layouts based on Eqn.(3).

5.3 Complexity Analysis
Theorem 1: Matrix Q is positive definite under certain
conditions of λ0 and the formulated quadratic programming
problem has the following properties: (1) it can be solved in
polynomial time complexity; (2) if it has a local minimum,
then this local minimum is also the global minimum.

Proof For notation simplicity, we assume a vector 	X ∈
�Ltotal×1 and X ≥ 	0. Let ρi be the coefficient of χi, where
χi is the ith element of 	X. Let Ltotal be the total number
of quantization levels among all base classifiers. Therefore
we have the following:

	XT Q 	X =
1

M

M∑ Ltotal∑
j=i+1

Ltotal∑
i=1

(ρiχi + ρjχj)
2 + Δ (38)

Algorithm 1 Meta-Classifier-Calibration

Require: data sample vectors and over-fit penalty λ0

Initialize Q, c, β
(l)
k (i), γ

(l)
k (i), ω

(l)
k (i)

Build Hierarchical MLK-ANN
Build Hierarchical MLK-SVM
Build Pattern Matchers
for All input data samples do

Generate the base classifiers

Update Q, c, β
(l)
k (i), γ

(l)
k (i), ω

(l)
k (i)

end for
Formulate Quadratic Programming Problem
if Q not positive definite then

Increase calibration data volume
Improve hotspot feature quality
Adjust parameter λ0

Consider matrix pre-conditioning
end if
Solve the Quadratic Programming Problem
Optimize the detection threshold function �

meta(·)
return weighting functions p

(l)
k and �

meta(·)

Algorithm 2 Meta-Classier-Prediction

Require: data sample vectors

Load weighting functions p
(l)
k and �

meta(·)
Load all base classifiers
Generate vector −→xi from base classifiers outputs
for Each data vector −→xi do

Calculate T meta
i =�

meta(
∑N

k=1 p
(Θ(x

(k)
i ))

k · x(k)
i )

end for
return Meta-decision {T meta

i }

where

Δ = −Ltotal − 2

M

M∑ Ltotal∑
i

ρ2
i χ

2
i + λ0

Ltotal∑
i

χ2
i (39)

We can adjust λ0 to achieve positive Δ (in practice usually

a λ0 slightly larger than Ltotal−2
M

∑M ). Therefore 	XT Q 	X

is always positive given non-zero 	X. Thus Q is a positive
definite matrix and has no negative eigenvalues under the
specified condition. Numerical simulations further validate
this proof by showing all positive eigenvalues for matrix Q.
Consequently, the Quadratic Programming problem can be
solved by the ellipsoid method [20] in polynomial time.

Since Q is a symmetric positive-definite matrix, f(·) is
now a convex function. Thus the quadratic program has
a global minimizer if there exists some feasible vector Xn

satisfying the constraints and if f(·) is bounded below on
the feasible region (Xn ∈ �n

+). Therefore in search of a
local minimum, if found, will guarantee the optimal global
minimum.

We solve the quadratic programming problem using a
proper λ0 to optimize the weighting functions during the
calibration phase. Then we use a heuristic approach to
search for the optimal �

meta(·) function. In Algorithm 1
and Algorithm 2, we show the details for the calibration
and application of the meta-classifier.

6. SIMULATION AND TESTING

6.1 Benchmarks and Simulation Setups
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Figure 7: Trade-off capabilities between hotspot accuracy

and false-alarms using various methods on C0 hotspots

To fully evaluate EPIC, we employed a number of train-
ing data sets and 3 new testing circuit benchmarks in 32nm.
These testing circuits include new hotspot patterns that
were not present in the training data. We labeled 2 classes
of ‘real’ lithographic hotspots based on 2 EPE thresholds.
In Table 2, C0 is the class0 hotspot patterns whose printed
images suffer from above 6nm of EPE; C1 refers to the pat-
terns whose printed images have EPE from 4.5nm to 6nm.
Further details of the 3 testing benchmarks are in Table 2.
To properly evaluate the proposed methods, we perform ac-
curate lithographic simulations as baseline to identify the
actual hotspots under industry-strength RETs.

In our simulation, EPIC incorporates two types of ma-
chine learning methods based on [10,13] and several pattern
matching techniques based on [14–17]. We implement EPIC
in C++ on 3.2GHz quad-core Linux workstations.

6.2 Result Analysis and Comparison
After the quadratic programming problem is solved, we

properly select the decision threshold function �
meta(·) us-

ing some calibration data to balance between hotspot accu-
racy and hotspot false-alarm. To illustrate such performance
trade-off, we test EPIC, ANN and SVM over C0 data with a
set of varying thresholds and plot the results in Fig. 7. We
also plot the performance region of the employed pattern
matchers, which include up to 4 major classes of hotspot
patterns. As we enrich the pattern library gradually with
up to more than hundreds of specific patterns and struc-
tures, the overall performance becomes a trade-off between
enhancing detection accuracy and suppressing false-alarms,
especially when there are new unseen types of hotspots in
the testing data.

From Fig. 7 we observe that in the region of above 70%
accuracy, EPIC shows higher hotspot accuracy than other
methods with very similar hotspot false-alarm, it also achieves
lower hotspot false-alarm given similar hotspot accuracy. We
also see that pattern matching methods are not good at
detecting new types of hotspots without obvious penalty
in hotspot false-alarm. In this sense, machine learning can
make pattern matching more robust to predict new/unknown
hotspots, especially when pattern enumeration becomes costly.

Based on Fig. 7, we calculate the following for each method:

Ψ = α · Accuracyhotspot + β · False alarmhotspot (40)

where α (positive) and β (negative) are user defined pa-

Table 2: Circuit benchmarks for testing EPIC
Benchmarks CK1 CK2 CK3

Layout Size um2 100×100 150×150 800×800
Fragment number 58K 94.5K 2.5M
Class0a Hotspots number 9 21 122

Class1b Hotspots number 61 134 2.8K
a Class0 hotspots: EPE ≥ 6nm for 32nm process.
b Class1 hotspots: 4.5nm ≤ EPE < 6nm for 32nm process.

Table 3: Performance of hotspot detection methods

Circuits Class Perf. ANN SVM PM EPIC

Hit 6 7 7 9
C0 Extra 79 41 280 48

Hit 52 54 53 57
CK1 C1 Extra 0.55K 0.33K 1.5K 0.3K

Hit 18 17 17 19
C0 Extra 0.2K 0.11K 0.7K 0.1K

Hit 119 120 120 125
CK2 C1 Extra 1.2K 0.75K 3.4K 0.65K

Hit 109 105 104 112
C0 Extra 1.2K 0.6K 3.9K 0.65K

Hit 2.45K 2.5K 2.5K 2.63K
CK3 C1 Extra 24K 16K 73K 13.5K

rameters to quantify the importance ratio between hotspot
accuracy and hotspot false-alarm. In Table 3 and Table 4,
we report the detection result of each method correspond-
ing to the peak of their respective Ψ function. We observe
that EPIC reaches the highest performance over both C0
and C1 categories of hotspots in both hotspot accuracy and
hotspot false-alarm. To be specific, it improves ANN and
SVM by 3.5-7% in hotspot accuracy and reduces up to 50%
in hotspot false-alarm counts. EPIC also outperforms PM
by 4.5-8.2% in hotspot accuracy and 53-81% in hotspot false-
alarm reduction. This demonstrates very promising poten-
tial of the meta-classification flow with respect to weighting
function optimizations. Moreover, EPIC runs at the speed
of around 45 min per mm2 design on a 3.2GHz quad-core
workstation, which is typically hundreds of times faster than
accurate lithography simulator.

In Fig. 8 we give two summary plots on the performance
comparisons of various hotspot prediction methods accord-
ing to (a): hotspot accuracy(Hit rate)/run-time, and (b):
hotspot false-alarm(Extra)/run-time, respectively. Here we
make some further observations.

First, EPIC achieves much enhanced performance in hotspot
prediction accuracy and false-alarms reduction, meanwhile
the extra CPU run-time is only 20-30 minutes per mm2 lay-
out in the worst case (versus pattern matching methods).

Second, in comparing C0 category of hotspots with C1
category, we see EPIC achieves higher Hit rate and lower
False-Alarm ratio (in the unit of X times of real hotspots)
over C1 than C0. In other words, EPIC gives more enhance-
ment in accuracy and false-alarm on C1. This is mostly be-
cause C1 class represents the set of lithography hotspot with

Table 4: Comparison between EPIC and previous
works

Hotspot C0 C1

Avg. Perf. Hit Extra Time Hit Extra Time
EPIC 92% 5X 0.72 94% 4.8X 0.72

ANN [10,13] 89% 10X 0.3 88% 8.8X 0.3
SVM [10,13] 86% 5X 0.35 89% 5.5X 0.35
PM [14–17] 85% 32X 0.2 90% 25X 0.2

Time calibrated in hour/mm2 unit on 3.2GHz quad-core Linux
workstation.
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Figure 8: Overall performance comparison in Hit rate, Extra ratio and run-time over C0 and C1 hotspot data

4.5nm to 6.0nm of EPE, while C0 is the set of hotspots with
above 6.0nm EPE values. Under our employed RETs, C0
translates to a set of hotspots that have high variability and
small quantity (a few hundred out of a layout with totally
millions of patterns); whereas C1 is a set of hotspots with
less severe variability and much larger quantity. This is why
sometimes detecting C0 could be slightly harder than C1.
However it also depends on how the trade-off solution is se-
lected using Ψ based on Fig. 7 to balance between hotspot
accuracy and hotspot false-alarm, e.g., ANN shows a slightly
higher (by 1%) accuracy rate in C0 than C1 category.

An important advantage of EPIC is that it is capable
of high performance hotspot prediction under varying EPE
thresholds and given large scale design layouts. We see
that EPIC exhibits very similar CPU run-time when tar-
geting at different categories of hotspot under different EPE
thresholds. We have also observed linear run-time complex-
ity when design layout up-scales in area. These properties
make our flow efficient for optimizing large industry designs.

Moreover, EPIC ’s unified formulation covers the static
hybrid detection flow proposed in [18] as a special case, i.e.,
when weighting function fMLK1(+1) = 0.5 and 0 elsewhere,
fMLK2(+1) = 0.5 and 0 elsewhere, fPM (+1) = 1.0 and 0
elsewhere, θ = 1.0, then EPIC ’s formulation Eqn.(3) will
be equivalent to the hybrid flow in [18]. Here EPIC ’s ad-
vantage lies in the dynamic/automated optimization tech-
niques, thus it can easily reach an optimized solution. Com-
paring with the static hybrid flow over the employed test
cases, EPIC observes around 5.7-6.8% of improvement in
hotspot accuracy and 3.9-8.6% of false-alarm reduction at
a small cost of 10% extra run-time. Depending on designs,
EPIC ’s advantages could be even higher.

7. CONCLUSION
In this paper we examined several different types of lithog-

raphy hotspot detection techniques and proposed EPIC, a
new formulation to selectively combine their respective ad-
vantages for further accuracy improvement. Under a meta-
detection flow, we first used mathematical programming tech-
niques for systematic performance optimization over a set of
calibration data, then applied the flow onto new testing cases
for further evaluation. EPIC’s accuracy, flexibility and false-
alarm suppression capability show very promising potential
for efficient litho-friendly design.

8. REFERENCES
[1] International Technology Roadmap for Semiconductors. 2011.

[2] Joydeep Mitra, Peng Yu, and David Z. Pan. RADAR:
RET-Aware Detailed Routing using Fast Lithography
Simulation. In Proc. Design Automation Conf., June 2005.

[3] Minsik Cho, Kun Yuan, Yongchan Ban, and David Z. Pan.
ELIAD: Efficient Lithography Aware Detailed Router with

Compact Printability Prediction. In Proc. Design Automation
Conf., June 2008.

[4] Tai-Chen Chen, Guang-Wan Liao, and Yao-Wen Chang.
Predictive Formulae for OPC with Applications to
Lithography-Friendly Routing. In Proc. Design Automation
Conf., June 2008.

[5] David Z. Pan, Minsik Cho, and Kun Yuan. Manufacturability
Aware Routing in Nanometer VLSI. In Foundations and
Trends in Electronic Design Automation, 2010.

[6] Duo Ding, Jhih-Rong Gao, Kun Yuan, and David Z. Pan.
AENEID: A Generic Lithography-Friendly Detailed Router
Based on Post-RET Data Learning and Hotspot Detection. In
Proc. Design Automation Conf., 2011.

[7] Norimasa Nagase, Kouichi Suzuki, Kazuhiko Takahashi,
Masahiko Minemura, Satoshi Yamauchi, and Tomoyuki Okada.
Study of Hotspot Detection using Neural Network Judgement.
In Proc. of SPIE, volume 6607, 07.

[8] Duo Ding, Xiang Wu, Joydeep Ghosh, and David Z. Pan.
Machine Learning based Lithographic Hotspot Detection with
Critical Feature Extraction and Classification. In IEEE Int.
Conf. on IC Design Technology, Austin, TX, 2009.

[9] Dragoljub Gagi Drmanac, Frank Liu, and Li-C. Wang.
Predicting Variability in Nanoscale Lithography Processes. In
Proc. Design Automation Conf., San Francisco, CA, 2009.

[10] Duo Ding, J. Andres Torres, Fidor G. Pikus, and David Z. Pan.
High Performance Lithographic Hotspot Detection Using
Hierarchically Refined Machine Learning. In Proc. Asia and
South Pacific Design Automation Conf., 2011.

[11] Jen-Yi Wuu, Fedor G. Pikus, J. Andres Torres, and Malgorzata
Marek-Sadowska. Detecting Context Sensitive Hot Spots in
Standard Cell Libraries. In Proc. of SPIE, 2009.

[12] Jen-Yi Wuu, Fedor G. Pikus, and Malgorzata Marek-Sadowska.
Rapid Layout Pattern Classification. In Proc. Asia and South
Pacific Design Automation Conf., 2011.

[13] Duo Ding, J. Andres Torres, and David Z. Pan. High
Performance Lithography Hotspot Detection with Successively
Refined Pattern Identifications and Machine Learning. In IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 2011.

[14] Jingyu Xu, Subarna Sinha, and Charles C. Chiang. Accurate
Detection for Process Hotspots with Vias and Incomplete
Specification. In Proc. Int. Conf. on Computer Aided Design,
2007.

[15] Andrew B. Kahng, Chul-Hong Park, and Xu Xu. Fast Dual
Graph based Hotspot Detection. In Proc. of SPIE, volume
6349, 2006.

[16] Hailong Yao, S. Sinha, C. Chiang, X. Hong, and Y. Cai.
Efficient Process Hotspot Detection using Range Pattern
Matching. In Proc. Int. Conf. on Computer Aided Design,
2006.

[17] Ning Ma, Justin Ghan, Sandipan Mishra, Costas Spanos,
Kameshwar Poolla, Norma Rodriguez, and Luigi Capodieci.
Automatic Hotspot Classification using Pattern-based
Clustering. In Proc. of SPIE, 2007.

[18] Jen-Yi Wuu, Fedor G. Pikus, and Malgorzata Marek-Sadowska.
Efficient Approach to Early Detection of Lithographic Hotspots
Using Machine Learning Systems and Pattern Matching. In
Proc. of SPIE, 2011.

[19] Kagan Tumer and Joydeep Ghosh. Robust Combining of
Disparate Classifiers through Order Statistics. In Pattern
Analysis & Applications, pp. 189-200, 2002.

[20] M. K. Kozlov, S. P. Tarasov, and Leonid G. Khachiyan.
Polynomial Solvability of Convex Quadratic Programming. In
Soviet Mathematics - Doklady 20, pp. 1108-1111, 1979.

3C-1

270



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


