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Notes 25: Largest Simplex Problem

1. Largest simplex

Problem 1.1. Maximum Volume Simplex (MVS)
Input: n+ 1 vectors v1, . . . , vn+1 ∈ Rd in d-dimension
Goal: Choose subset S ∈

([n+1]
d+1

)
of the given vectors whose simplex {vi}i∈S has largest volume

In recommendation systems in machine learning, if each vector represents features of articles,
largest volume may mean diversity of topics.

Problem 1.2. Maximum subdeterminant (MSD)
Input: n-by-n positive-semidefinite matrix X of rank d

Goal: d-by-d principal submatrix XS,S of X maximizing det(XS,S), where S ∈
([n]
d

)
The first problem reduces to the second by the following algorithm:

Reduction
For every i ∈ [n+ 1] (Try to include vi in the solution)

Set uj = vj − vi (Shift all vertors so that vi is at the origin)
Set Gram matrix Xjk = 〈uj , uk〉 for j, k ∈ [n+ 1] \ {i}
Solve MSD on X to find S ⊆ [n+ 1] \ {i} with |S| = d
A candidate solution is S ∪ {i}

Output the candidate solution with the maximum volume

Given d vectors u1, . . . , ud in Rd,

vol(simplex(0, u1, . . . , ud)) =
1

d!
vol(parallelepiped(u1, . . . , ud)) =

1

d!
det(U) ,

where U is the matrix with column vectors u1, . . . , ud.
When X = U>U is the Gram matrix of u1, . . . , ud,

det(X) = det(U>U) = det(U)2 .

Finding S ∈
([n+1]\{i}

d

)
of maximum det(XS,S) means maximizing vol(simplex(vi, vS)).

2. Nikolov’s algorithm

Nikolov’s algorithm for MSD has approximation factor e−d+o(d).
It is based on the convex program:

max log det

∑
i∈[n]

ciuiu
>
i


∑
i∈[n]

ci = d

ci > 0 for i ∈ [n]

log det(X) is concave in X (det is log-concave in X).
A solution to the program is fractional solution to MSD: When c = 1S ,

det
∑
i∈[n]

ciuiu
>
i = det

∑
i∈S

uiu
>
i = det(USU

>
S ) = det(US)

2 ,

where US is the matrix with column vectors {ui}i∈S .
Therefore the program is a relaxation of MSD.
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3. Löwner ellipsoid

Dual program to the above program:

min − log det(W )

u>i Wui 6 1 for i ∈ [n]

W � 0

One can check that strong duality holds and there is no duality gap (e.g. Slater’s condition is
satisfied).

What we call the dual program here was historically the primal program for MSD.
Let X be the Gram matrix of u1, . . . , un ∈ Rd.
Löwner ellipsoid of u1, . . . , un is the smallest volume ellipsoid containing every ui.
The dual program finds the Löwner ellipsoid (centered at the origin) of u1, . . . , un.
An ellipsoid is the image of the unit ball Bd = {x ∈ Rd | ‖x‖ 6 1} under an affine map:

E = {Ax+ b | ‖x‖ 6 1} ,

where A is a linear map on Rd and b ∈ Rd is the center of the ellipsoid.
Equivalently,

b+ y ∈ E ⇐⇒ y = Ax for some ‖x‖ 6 1

⇐⇒ ‖A−1y‖2 = y>(A−1)
>
A−1y 6 1 if A is invertible.

A is invertible if and only if E is full dimensional.
W in the dual program plays the role of (A>A)

−1
= (A−1)

>
A−1.

Claim 3.1. An ellipsoid centered at the origin has orthogonal principal semi-axes y1, . . . , yd, so that

E =

∑
i∈[d]

xiyi | ‖x‖ 6 1

 .

Proof. Spectral theorem applied to the symmetric matrix A>A yields the decomposition

A>A =
∑
i∈[d]

λiviv
>
i

where λi are eigenvalues and vi are orthonormal eigenvectors. All eigenvalues are nonnegative, since
eigenvalues of A>A are squared singular values of A.

Let yi =
√
λivi.

Then the semi-axes yi are orthogonal, because 〈yi, yj〉 =
√
λiλj〈vi, vj〉.

Also,

y ∈ E ⇐⇒ y = Ax for some ‖x‖ 6 1 ⇐⇒ y ∈ range A and y>(A>A)
+
y 6 1 .

y is in the range (column-space) of A if and only if it is in the range of A>A, because the
right-singular vectors of A are the eigenvectors of A>A.

Therefore y =
∑

i∈[d] ziyi for some z ∈ Rd. And

y>(A>A)
+
y =

(∑
i

ziy
>
i

) ∑
i: λi 6=0

1

λi
viv

>
i

(∑
i

ziyi

)
=
∑
i

z2i .

Therefore y ∈ E if and only if the sum of coefficents squared is at most 1. �

From the above proof, det(A>A) =
∏

i∈[d] λi = vol(E)2/vol(Bd)2 ∝ vol(E)2.
Therefore 1/detW (dual objective exponentiated) is proportional to vol(E)2, since 1/detW =

det(W−1) = det(A>A).
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4. Nikolov’s rounding
Rounding

Solve the primal convex program
Let pi = ci/d for i ∈ [n]
Sample i ∈ [n] with probability pi independently with replacement for d times to get S

The primal constraints mean pi’s are the probability mass of a distribution over [n]

Proposition 4.1.
E[det(US)

2] = d!det
∑
i∈[n]

piuiu
>
i .

The proof requires the following classical result from linear algebra.

Lemma 4.2 (Cauchy–Binet). For any d-by-n matrix U ,

det(UU>) =
∑

S∈
([n]

d

) det(US)
2.

Proof of Proposition 4.1. When choosing S with replacement, if any element in S repeats, then
det(US)

2 = 0.
If there are no repeated elements, then S can be chosen in d! ways, each with probability

∏
i∈S pi.

Therefore
E[det(US)

2] = d!
∑

S∈
([n]

d

)
∏
i∈S

pi det(US)
2 = d!

∑
S∈

([n]
d

) det((UP 1/2)S)
2

where P = Diag(p1, . . . , pn) is the diagonal matrix with pi on the diagonal.
By Cauchy–Binet, the sum of determinants equals det(UPU>). And that is det

∑
i∈[n] piuiu

>
i . �

Since pi = ci/d,
det

∑
i∈[n]

piuiu
>
i =

1

dd
det

∑
i∈[n]

ciuiu
>
i .

The determinant on the right is the primal objective (exponentiated).
In expectation, Nikolov’s algorithm outputs a principal submatrix XS,S with determinant d!/dd

times the primal objective value (exponentiated).
Standard (Stirling’s) approximation gives

d!

dd
∼

√
2πde−d = e−d+o(d) .
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