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Notes 22: High dimensional expander

1. Abstract simplicial complex

We want to apply the sampling algorithm based on random walk/Markov chain in the last lecture
to other settings (spanning trees, d-paths, d-cliques, etc). Let us generalize those constructions.

Definition 1.1 (Abstract simplicial complex). A set system Y = (U,F) is a ground set U together
with a family F of subsets over U . An abstract simplicial complex is downward closed set system:
If f ∈ F and g ⊆ f , then g ∈ F .

Abstract simplicial complex in combinatorics was originally proposed to describe the combina-
torial structure of a (non-abstract) simplicial complex in algebraic topology. We need not worry
about that motivation. Simply think of an abstract simplicial complex as a downward-closed set
system.

Definition 1.2 (Level). Level i of an abstract simplicial complex Y is the family of subsets of size
i in Y , and is denoted Y (i) = {f ∈ F | |f | = i}. The top level Y (d) of Y is the non-empty level
with the maximum d.

In the literature, f ∈ F of size i is also called a face of dimension i − 1. The collection of all
such faces is denoted X(i − 1) (same as our Y (i)). I do not follow the standard terminology of
“dimension”, since this off-by-one is more confusing than helpful.

Definition 1.3 (Pure). An abstract simplicial complex Y is pure if every face f ∈ Y (i) is contained
in some g ∈ Y (d) in its top level.

Definition 1.4 (Weight). Weight w : Y (d) → R+ assigns positive weights to the maximal faces of
a pure abstract simplicial complex Y .

Random walk on pure abstract simplicial complex Y

Let f0 be an arbitrary face in the top level Y (d)
For t = 0, 1, 2, . . .

Remove an element from ft uniformly at random to obtain gt ∈ Y (d− 1)
Among all ft+1 ⊃ gt, pick the new ft+1 ∈ Y (d) with probability proportional to w(ft+1)

This is a random walk/Markov chain on a weighted graph with vertex set Y (d), and two nodes
are adjacent if they share exactly d− 1 elements.

An abstract simplicial complex Y = (U,F) with top level Y (d) represents a hypergraph, whose
vertex set is U and whose set of hyperedges is Y (d). When the top level is Y (2), we get a graph
(and weight is the usual edge weight).

From now on simply call the combinatorial set system a simplicial complex (without “abstract”).

2. Inclusion graph

Definition 2.1 (Bipartite inclusion graph). For 0 6 k 6 d, Γk has vertex set Y (k) ∪ Y (k − 1).
t ∈ Y (k) is adjacent to b ∈ Y (k − 1) if t ⊃ b.

Weight trickles down from higher level to lower level via

(1) w(b) =
∑

t∈Y (k), t⊃b

w(t) for b ∈ Y (k − 1), 0 < k 6 d .

Since the set system is pure, every face at a lower level also gets positive weight.
We recover random walk (up and down transitions) of last lecture, if we set

• distribution πk over Y (k) to be proportional to the weights: πk(t) =
w(t)∑

t′∈Y (k)w(t
′)

.

• edge distribution µk(t, b) = πk(t)/k
1
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As before, we will also look at (d+ 1)-partite inclusion graph Γd ∪ · · · ∪ Γ0.
Positive weight w at the top level plays the same role as last lecture’s π, just unnormalized.
Weight at lower level induces distribution that coincides with the bottom marginal πk−1 of µk:

πk−1(b) =
∑
t∼b

µk(t, b) ∝
∑
t∼b

πk(t) ∝
∑
t∼b

w(t) = w(b) .

Therefore weight defined here agrees with (is proportional to) marginals πk induced from last lec-
ture’s random path process fd ⊃ · · · ⊃ f0 over Γd ∪ · · · ∪ Γ0, but unnormalized.

Working with weight w is more convenient than πk, since we need not worry about normalization.
In this case edge weight w(t, b) is w(t). Eq. (1) says w(b) is simply the degree of b under these edge
weights. The degree of t is kw(t) ∝ w(t).

3. Links

Recall Garland’s method decomposed P̃∧
k into

∑
b P̃

∧
b over b ∈ Y (k − 1), and P∨

k =
∑

b P
∨
b .

P̃∧
b corresponds to transitions in a weighted subgraph Hb = (Sb, Eb), where

Sb = {m ∈ Y (k) | m ⊃ b} Eb = {(m,m′) ∈ Sb × Sb | m ∪m′ ∈ Y (k + 1)} .

In the literature, Hb is known as the 1-skeleton of the link of b:

Definition 3.1 (Link). Given a simplicial complex Y = (U,F) and a face b ∈ F , the link of b is
Yb = (U,Fb), with faces

Fb = {f \ b | f ∈ F , f ⊇ b} .

Fb consists of faces g that can extend b to remain in F , so that g ∪ b ∈ F .
Every link Yb in a pure simplicial complex Y is also a pure simplicial complex.

Definition 3.2 (Skeleton). Given a simplicial complex Y = (U,F), its k-skeleton (U,Fk) consists
of faces in F of size at most k + 1.

Think of (U,F) as a hypergraph. 0- and 1-skeletons represent vertices and (non-hyper) edges.
Also, Sb is the 0-skeleton of the link of b.
On one hand, Hb is a pure simplicial complex with weight w induced from the weight of Y by

Eq. (1).
On the other hand, Hb is a graph on Sb with edge weight w.
Consider random walk on Hb with edge weights w. It has transition probability

Pb(m,m′) =


w(m ∪m′)

w(m)
m ∩m′ = b

0 otherwise
.

The non-lazy up-walk P̃∧
b is the random walk Pb on the 1-skeleton Hb scaled down by k:

P̃∧
b =

1

k
Pb ,

because both are supported on transitions satisfying m ∩m′ = b, and for these m and m′

P̃∧
b (m,m′) =

w(m ∪m′)

w(m)

1

k
=

1

k
Pb(m,m′) .

Note that Pb is also the non-lazy up-walk in the second layer of the link Yb. On the other hand,
the usual up-walk in the same layer coincides with the lazy random walk on the weighted graph Hb.

Down-walk P∨
b has transition probability

P∨
b (m,m′) =

w(m′)

kw(b)
=:

1

k
P b(m,m′) for m,m′ ∈ Sb .

Since
∑

m′∈Sb
w(m′) = w(b) by Eq. (1), P b is the same as the transition probability of a weighted

clique over Sb that moves to m′ with probability proportional to w(m′).
We claimed in last lecture that P̃∧

b 4Π P∨
b when the pure simplicial complex is a matroid.

Multiplying both sides by k, this is equivalent to Pb 4Π P b.
This is the same as λ2(Pb) 6 0, since P b has rank 1 and have all non-trivial eigenvalues 0.
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Definition 3.3 (Link expander). A pure simplicial complex Y with weight w is an α-link expander
if λ2(Pb) 6 α for all b ∈ Y (k − 1) and 0 < k < d− 1.

In this convoluted language, the yet unproved lemma in last lecture becomes:

Lemma 3.4. If Y is the pure simplicial complex of a matroid of rank d with uniform weight w = 1

on Y (d), then Y is a 0-link expander.

4. Spectra of transition vs normalized adjacency matrix

An undirected graph with adjacency matrix A and (diagonal) degree matrix W has normalized
adjacency matrix A = W−1/2AW−1/2. Since A is symmetric, Courant-Fischer says its k-th largest
eigenvalue λk is

λk = max
S: dim(S)=k

min
x∈S\{0}

〈x,Ax〉
〈x, x〉

,

where 〈x, y〉 denotes the inner product 〈x, y〉 = x>y =
∑

i∈V x(i)y(i).
The random walk transition matrix P = W−1A is not symmetric, so Courant–Fischer does not

apply directly to P . But P = W−1/2AW 1/2 is similar to A, which is symmetric, so we can apply
Courant–Fischer indirectly using a change of basis via W .

Given W < 0, define positive-semidefinite inner product 〈x, y〉W = 〈W 1/2x,W 1/2y〉 = x>Wy.
When W � 0,

〈x,Ax〉
〈x, x〉

=
x>Ax

x>x
=

x>W−1/2AW−1/2x

x>x
=

z>Az

z>Wz
(let z = W−1/2x, so x = W 1/2z)

=
z>WPz

z>Wz
=

〈z, Pz〉W
〈z, z〉W

.

Therefore the kth largest eigenvalue λk of P is

λk = max
S: dim(S)=k

min
z∈S\{0}

〈z, Pz〉W
〈z, z〉W

.

We will also denote by ‖·‖W the seminorm induced by 〈·, ·〉W , so that ‖z‖2W = 〈z, z〉W .

5. Oppenheim’s theorem

Oppenheim found a way to translate eigenvalue bound on a higher layer links to that of a lower
layer.

Theorem 5.1 (Oppenheim). Let Y be a pure simplicial complex with weight w. Suppose λ2(Pb) 6 α
for every b ∈ Y (1). Also, suppose its 1-skeleton graph H = (Y (1), Y (2)) is connected. Then H is
an α

1− α
-expander. Equivalently, the random walk P on H satisfies λ2(P ) 6

α

1− α
.

Applying Oppenheim’s theorem inductively, we get:

Corollary 5.2. Let Y be a pure simplicial complex with weight w. Suppose every link Yb has
a connected 1-skeleton graph. Also, suppose the 1-skeleton graph of every b ∈ Y (d − 2) is an
α-expander. Then Y is an α

1− (d− 1)α
expander.

Before proving Oppenheim’s Theorem 5.1, we first sketch the reasons that the hypotheses of the
previous theorem holds for the matroid with uniform weight at the top level.

That every link Yb is connected is due to the exchangable property of matroid (details omitted).
Given any b ∈ Y (n− 3), the 1-skeleton Hb = (Sb, Eb) of Yb has adjacency matrix

Ab(f, f
′) =

{
1 if b ∪ f ∪ f ′ is a spanning tree
0 otherwisew

.

Edges in b induces three connected components in G. Adding two more edges to these components
yields a spanning tree, provided the two edges added are connecting different pairs of components.
This partitions the 0-skeleton Sb of Yb into three sets E1, E2, E3.
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The adjacency matrix Ab is of the form

Ab =

E1 E2 E2( )
E1 O 1 1

E2 1 O 1

E3 1 1 O

= 1− 1E11
>
E1

− 1E21
>
E2

− 1E31
>
E3

.

Here 1 denotes the all-one matrix of appropriate dimension.
The all-one matrix 1 on Sb has rank 1 and nonpositive second eigenvalue, so after subtracting

three positive semidefinite matrices 1Ei1
>
Ei

from 1, Ab also has nonpositive second eigenvalue by
Courant–Fishcer.

Therefore the normalized adjacency matrix of Yb also has nonpositive second eigenvalue.

Proof of Theorem 5.1. The adjacency matrix A on the empty link H = (Y (1), Y (2)) is

A(f, g) =

{
w(f ∪ g) f ∪ g ∈ Y (2)

0 otherwise
.

For b ∈ Y (1), the adjacency matrix Ab on the link of b is

A(f, g) =

{
w(b ∪ f ∪ g) b ∪ f ∪ g ∈ Y (3)

0 otherwise
.

We can decompose A =
∑

b∈Y (1)Ab, because Eq. (1) implies

w(f ∪ g) =
∑

b∪f∪g∈Y (3)

w(b ∪ f ∪ g) .

The random walk transition P = W−1A on H is similar to the normalized adjacency matrix
A = W−1/2AW−1/2, so P and A have the same spectrum. Similarly the transition Pb = W−1

b Ab on
Yb is similar to the normalized adjacency matrix Pb = W

−1/2
b AbW

−1/2
b .

Let y be a (right-)eigenvector of P with eigenvalue λ. Then

(2) λ‖y‖2W = 〈y, Py〉W = 〈y,Ay〉 =
∑

b∈Y (1)

〈y,Aby〉 =
∑

b∈Y (1)

〈y, Pby〉Wb
.

Recall that the top (right-)eigenvector of Pb is 1Sb
, with eigenvalue 1.

Let Π
‖
b denote projection to the span of 1Sb

, and Π⊥
b denote projection to the orthogonal com-

plement:

Π
‖
b(y) =

〈y,1Sb
〉W

〈1Sb
,1Sb

〉W
1Sb

and Π⊥
b (y) = y −Π

‖
b(y) .

Expand every term in the sum Eq. (2) as

y = y
‖
b + y⊥b where y

‖
b = Π

‖
b(y) = 〈y,1Sb

〉Wb
1Sb

and y⊥b = Π⊥
b (y) .

Then

(3) 〈y, Pby〉Wb
=
〈
y
‖
b , Pby

‖
b

〉
Wb

+
〈
y⊥b , Pby

⊥
b

〉
Wb

,

using the fact that 〈
y⊥b , Pby

‖
b

〉
Wb

=
〈
y⊥b , Pb1Sb

〉
Wb

〈y,1Sb
〉Wb

= 0

because Pb1Sb
= 1Sb

, which is Wb-orthogonal to y⊥b .
For the second term in Eq. (3), the assumption that λ2(Pb) 6 α implies〈

y⊥b , Pby
⊥
b

〉
Wb

6 α‖y⊥b ‖2Wb
= α

∑
b∈Y (1)

(
‖y‖2Wb

− ‖y‖b‖
2
Wb

)
= α‖y‖2W − α

∑
b∈Y (1)

‖y‖b‖
2
Wb

,

where the last equality is ∑
b∈Y (1)

‖y‖2Wb
=
∑

b∈Y (1)

y>Wby = y>Wy
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due to
W = Diag(w) =

∑
b∈Y (1)

Diag(wb) =
∑

b∈Y (1)

Wb .

For the first term in Eq. (3), since y
‖
b is a (right-)eigenvector of Pb with eigenvalue 1,〈
y
‖
b , Pby

‖
b

〉
Wb

= ‖y‖b‖
2
Wb

.

Therefore Eq. (2) becomes

λ‖y‖2W 6 α‖y‖2W + (1− α)
∑

b∈Y (1)

‖y‖b‖
2
Wb

.

We have

‖y‖b‖
2
Wb

=
〈y,1Sb

〉2Wb

‖1Sb
‖2Wb

.

Note that
‖1Sb

‖2Wb
=
∑
v∈Sb

wb(v) =
∑
v∈Sb

w(b ∪ v) = w(b)

using Eq. (1), and

〈y,1Sb
〉Wb

=
∑

i∈Y (1)

y(i)wb(i) =
∑

i∈Y (1)

y(i)w(b ∪ i) = (Ay)b .

∑
b∈Y (1)

‖y‖b‖
2
Wb

=
∑

b∈Y (1)

〈y,1〉2Wb

‖1Sb
‖2Wb

=
∑

b∈Y (1)

(Ay)2b
w(b)

= 〈Ay,W−1Ay〉 = 〈W−1Ay,W−1Ay〉W

= ‖Py‖2W = λ2‖y‖2W .

Hence
λy2W 6 α‖y‖2W + (1− α)λ2‖y‖2W ,

so
λ− λ2 6 α(1− λ2) .

The assumption that the empty link is connected means λ < 1. Divide both sides by 1−λ to get

λ 6 α(1 + λ) =⇒ λ 6
α

1− α
. �

Oppenheim’s theorem implies
P̃∧
b 4Wb

P∨
b

for every link b in the simplicial complex of a matroid. To get
P̃∧
k 4Πk

P∨
k

as claimed in Notes20, we need an analysis similar to the proof of Theorem 5.1.
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