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Notes 20: Sampling spanning trees by random walk

1. RANDOM SPANNING TREES

Fix a connected graph G = (V, E) on n vertices. A spanning tree in G is an acyclic subgraph of
G containing n — 1 edges.
We want to sample a spanning tree of G, (nearly) uniformly at random, as follows.

Random walk on spanning trees

Let T be an arbitrary spanning tree of G
Fort=0,1,2,...
Remove an edge from T; uniformly at random to obtain F}
Among all spanning trees containing F;, uniformly pick one as the new Ty

This is a random walk /Markov chain on an auxiliary weighted graph 7¢, whose nodes are spanning
trees in (¢, and two nodes in 7 are adjacent if they share exactly n — 2 edges.

For decades, this random walk was conjectured to mix in polynomial time. It was recently proved
by Anari, Liu, Oveis Gharan, and Vinzart.

Theorem 1.1. The above random walk has eigenvalue gap at least 1/(n —1).

Eigenvalue gap [ is the difference A\; — Ao between the two largest eigenvalues. By results in
Notes12, the lazy version of the random walk mixes in polynomial time. Recall that the lazy

random walk mixes in time O((log |V (7)|)/B). Since |V(Tg)| < ((’5)) < (n"_QI) < n2-h) =

n—1
exp(O(nlogn)), the lazy random walk mixes in time O(n?logn).

2. BIPARTITE INCLUSION GRAPHS

Since the ambient graph G is fixed, we identify a spanning tree 7" in G with the set of n — 1 edges
inT.
Denote by Y (n — 1) the sets of edges of spanning trees in G. More generally, define

Y (k) = {FE (f) | Fis acyclic} for0<k<n-—1.

Decompose the random walk over spanning trees into two transitions:

e (Down) Go from T; € Y(n —1) to Fy € Y(n — 2) by removing an edge uniformly at random
e (Up) Then from F; to Ty+1 € Y (n—1) by choosing T4 uniformly from among all ;11 D F}

Down transition corresponds to matrix D1, which is Y (n — 1)-by-Y (n — 2) (recall that a row
probability vector multiplies on the left to a transition matrix). Likewise up transition corresponds
to matrix U,_1, which is Y (n — 2)-by-Y (n — 1).

D,,_1U, 1 is the transition matrix for the random walk. We want to bound S(Dy,_1U,_1).

We think of up and down transitions as random walk transitions on the auxiliary graph I';,_1:

Definition 2.1 (Bipartite inclusion graph). For 0 < k < n — 1, 'y has vertex set Y (k) UY (k —1).
F €Y (k) is adjacent to F' € Y(k—1)if F D F'.

We will look at 'y, for 0 < k < n — 1 later on to apply induction.

In T, down transition means moving from F € Y (k) to a random neighbor F’' € Y (k — 1),
uniformly from among all k£ neighbors of F'.

We will define up transition matrix Uy, shortly, to move from F’ € Y (k—1) to a random neighbor
F € Y(k) from some distribution.

Thanks to the following proposition, D,,_1U,_1 and U,_1D,_1 have the same eigenvalue gap,
whenever this gap is at most 1.

Proposition 2.2. Given any matrices A and B, AB and BA have the same non-zero eigenvalues

with the same multiplicities.
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This proposition can be proved by showing AB and BA have essentially the same characteristic
polynomials. Look up “Characteristic polynomials” on Wikipedia if interested.

Kaufman and Oppenheim came up with a way to relate S(Up—1Dn—1) to B(Dyp—2Up—2). Of
course, S(Dy—2Up—2) = B(Up—2Dy,—2). One can then inductively bound B(UyDy) = 5(DyUy).

Proposition 2.3 (Kaufman-Oppenheim). 3(DyUy) > 1/k for 1 <k <n—1.

This main proposition implies the main theorem.

3. RANDOM WALK ON BIPARTITE GRAPH

Up and down transitions U, and Dy in ['y, are special cases of random walk on bipartite graph.

3.1. General bipartite graph. Consider bipartite graph I on vertex set T'U B (“top” and “bot-
tom”) with weight u over its edges.

Further assume p is a distribution: nonnegative weight on edges summing to 1.

Choosing an edge (t,b) € T'x B from p induces marginal distribution 77 on T, and marginal 7p
on B.

The marginal probability 7 (¢) coincides with the degree of ¢t € T' (sum of edge weights incident
to t). Similarly 7p(b) is the degree of b € B.

The simple random walk on I" with edge weights p has transition matrix (8 g)

D denotes (“down”) transition from 7" to B; U denotes (“up”) transition from B to T

Distribution 7 = (%TI'T, %71’3) over T'U B is stationary for the random walk, because its probability
masses are proportional to vertex degrees.
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3.2. Bipartite inclusion graph I'y. Then T =Y (k) and B=Y (k — 1).

Edge weight © = g will be chosen later so that D = Dj. That is, random walk from 7" to B
according to px corresponds to uniformly dropping an element from t € T'.

We want transition probabilities (¢, b)/mr(t) from ¢ to any of its neighbor b to be 1/k, so

7 (t)

ur(t,b) = for every edge (t,b) in I'j.

Uy will be up transition matrix U in I'g, i.e. random walk from B to T according to ug.
Uy coincides with this transition: Given b € B, choose neighbor ¢ of b with probability propor-
tional to 7 (t). This is because
. uk(t, b) 1 FT(t)

Uk(b,t) = 7TB<b) = 7TB(b) L X 7TT(t) .

4. n-BIPARTITE INCLUSION GRAPH

We can visualize using the n-bipartite inclusion graph I',,_; U---UT’.
We now define edge weights uy’s for every layer so that

(A) Every py is a distribution over edges in I'y,

(B) Down transition in I'y, according to py is Dy

(C) The top marginal of y,,—1 is the uniform over Y (n — 1)

(D) Top marginal distribution of pg_1 in I'y_; equals bottom marginal distribution of py in T'y
(so as to relate S(UxDy) in Ty to B(Dg_1Ug—_1) in T'x_1)

This is done by the following random process of choosing a path (Fj,_1,...,Fp)on 'y, U---UT'y:

(1) Choose F,,_1 € Y(n — 1) uniformly at random
(2) For k from n — 1 to 1, drop a uniformly random edge in Fj to get Fy_1 € Y(k —1)
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F}, in this random path has marginal distribution 73, over Y (k). 7 is both the top marginal of
i in T'y and bottom marginal of pp4q1 in Tgyq.

The joint marginal of (Fy, Fx—1) € Y (k) x Y (k — 1) induces edge distribution py, for I'.

ﬂ,;er = 7rkT_1 and 7r,€T_1Uk = 7r,;r, so both DUy, and Uy41Dy41 have stationary distribution .

Tn—1 is uniform over Y (n — 1). U,_1 defined here agrees with §2 since U,,_1(b,t) ox mp—1(¢) o 1.

For some applications, one may want to sample from a nonuniform target distribution 7 over
spanning trees in Y (n — 1). For example, G may have edge weights w, and a natural distribution
7 on spanning trees 7' would be proportional to the product of edge weights in T, so that 7 (7T)

[eer w(e)-

We need to change the edge weights uyg, so that they now satisfy
(C’) The top marginal of p,—; is 7

This can be done by changing the first step of the random process of the path (F,_1,..., Fp):
(1’) Choose Fj,—1 € Y(n—1) from 7

Step (2) remains the same. Changing initial distribution 7 in step (1) will affect edge distributions
ug in I'y and marginals 7 on Y (k).
Everything in our analysis still holds given any target distribution 7w over Y (n — 1).

5. UP-WALK AND DOWN-WALK
In I'g, layer k of the n-partite inclusion graph, there are two natural two-step walks:

e Up-walk P}* | = UpDj, on a weighted graph on vertex set Y (k — 1)
e Down-walk P}/ = DU}, on a weighted graph on vertex set Y (k)

Focusing on I'y, abbreviate

T=Y(k) B=Y(k-1  p=m

5.1. Down-walk. P, = DUy, induces a random walk on a weighted graph on T'.
A step in ka also corresponds to a length-2 walk in I'y, from 7" to B to T.

Z pu(t, ) p(t',b) t=1+
. o wk/(t) Ti—1(b)
Pt 1) = ¢ pu(t,b) p(t',b) tnt'=bec B
Wk(t) kal(b)
0 otherwise

5.2. Up-walk. P{' | = Uy_1Djy_; corresponds to the random walk on a weighted graph on B.
A step in P* | also corresponds to a length-2 walk in I'y, from B to T to B.

1/k b=V
t,b t, v
Pr by = B BEY) e
r—1(b) g (1)
0 otherwise

5.3. Non-lazy up-walk. P} | is the non-lazy version of P} ;.
A step in 15,?_1 also corresponds to a length-2 path in I'g, from B to T to a different vertex in B.

1 k—1 =

Tg—1 is stationary for both P{* | and 15,?_1, as a common left-eigenvector with eigenvalue 1.



6. SPECTRAL COMPARISON

We now upperbound the spectrum of 15,? by the spectrum of PY. It is more convenient to first
transform each of them into a symmetric matrix with the same spectrum.

]5,? and P share a common stationary distribution 7. These transitions are both of the form
P(b,b') = Ap(b,V')/mr(b) for symmetric Ap, so P = II"'Ap, where II = Diag(n;). They both
represent a random walk with adjacency matrix Ap = IIP and common degree matrix II.

Definition 6.1. Given matrices P, Q,I1, if I P, II1Q) are symmetric, we write
P=xnQ@ <— IIP x 11IQ .

P <11 Q is equivalent to IIY/2PII~1/2 5 IY/2QI~Y/2, if II is symmetric and II > 0.

Since P is similar to the symmetric matrix Ap = II/2PII~1/2 (the normalized adjacency matrix),
they have the same spectra.

In our application, P and @ often represent transitions with a common stationary distribution
(the main diagonal of IT). Ap and Ag will have the same top eigenspace (spanned by 1). Applying
Courant—Fishcer to the orthogonal subspace,

P<nQ = Ap < Ag =

Xo(Ap) = sup 2 Apzr < sup JJTAQ.%' = X2 (Ag) ,
211, z]l=1 211, af=1

and hence A2(P) = A2(Ap) < Xa(Ag) = M2 (Q).
Proposition 6.2. For 1 <k < n— 2, let Il = Diag(n;). Then P} <u P.

This proposition is proved in the next section. We now show how it implies Proposition 2.3.

Proof of Proposition 2.3. M\ (P})) = 1. We prove by induction that Aa(FP)) <1 — % _k ; 1.
When k =1, P} has rank 1, so \a(P)) =0 < %
For k > 1, ]5,?_1 <u PY_, by Proposition 6.2, so )\2(]5,?_1) < a(PY ) < %
Also Mo(PfLy) = &+ S daBy) < F

k—1

P} | = UyDy, and P! = DUy, share the same non-zero eigenvalues, thus A (PY) < k:

7. GARLAND’S METHOD

We now discuss Proposition 6.2 that bounds ]5,? by PY.
Focusing on adjacent layers I'y 11 U 'y, abbreviate

T=Y(k+1) M =Y (k) B=Y(k-1) (“top” “middle” “bottom”)

Garland method decomposes transitions of P\ and ]5,9 into unions of subgraphs.

7.1. Down-walk. A step in P = DU, represents a length-2 walk (m, b, m’) from M to B to M.
k

Decompose P, = Z P, based on the bottom vertex b of (m, b, m’).
beB
PbV also corresponds to transitions on a weighted clique (with self-loops) over S, C M, where

Sp={meM|mD>Db}.

7.2. Non-lazy up-walk. A step in ]5,? represents a length-2 path (m,t,m’) from M to T to a

different vertex in M. Decompose P} = Z P/ based on the common intersection b = m Nm’ of

beB
this path.

Pb/\ also corresponds to transitions on the weighted graph Hy = (Sy, Ep) over S, with edge set

Ey={(m,m') €S, xSy, |mum’ e T}.
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7.3. Spectra. The down-walk and non-lazy up-walk are now decomposed into subgraphs on Sy,
over various b € B.

For P/, the subgraph (with adjacency matrix IIP)) is a clique with self-loops.

For PbA, the subgraph H (with adjacency matrix Hpb/\) has its edges determined by Y (k + 1).

Kaufman and Oppenheim proved that Proposition 6.2 still holds “when restricted to these two
subgraphs on Sp”.

Lemma 7.1. For 1 <k<n—2andb€Y(k—1), let T = Diag(m,). Then P <n P'.

This lemma is proved in the next lecture. Summing over b € Y (k — 1) yields Proposition 6.2.
For P: It has rank 1 since IIP) = ppu) /m—1(b) (s is the vector of edge weights incident to b).
Therefore A\o(P)) = -+ = A (P)) =0, and IIP’ is a clique that mixes perfectly in one step.
For IBbA: Turns out ]-:’b/\ and P, share the same top eigenvector with the same eigenvalue.
Therefore Pb/\ <n P’ is equivalent to )\g(ﬁb/\) <0.

In particular ]5bA must be a weighted expander.

8. VARIATIONS

Suppose you want apply the same random walk algorithm to a different setting, such as

e Uniformly sample a path of length d in a graph G; or
e Uniformly sample a clique of size d in a graph G.

Does the same random walk mix quickly in these settings?

All the constructions still make sense in those settings ((k 4 1)-partite inclusion graph, up- and
down-walks, Garland’s decomposition). But Lemma 7.1 may or may not hold.

Turns out P, from the previous section will still has rank 1 and represents a perfectly mixing
weighted clique with Ao(P)) = -+ = A\, (P)) = 0.

But now pb/\ may not represent weighted expanders and may violate )\Q(ﬁb/\) < 0, because the
subgraphs H}, depend crucially on Y (k4 1) (and also indirectly on distribution 7 at the top layer).

They might only satisfy the weaker bound )\2(1517/\) < « for some 0 < o < 1, depending on the
situation. So pb/\ are only a-expanders. This a upperbounds the error when you approximate the
clique of P, by the a-expander of PbA. We will discuss this general situation in the next lecture.

If you can only show Ag(P))) < a for all b € Y(k) and 1 < k < d — 1, then the conclusion of
Proposition 6.2 is weakened to be P} < PY + al. And in the proof of Proposition 2.3, you get
the weaker bound A2(PY) < 1— 7 + a(k — 1), since the error accumulates in the induction. This
might still give you something useful if « is tiny (at most roughly 1/k2).

With a more careful analysis, Alev et al can get a nontrivial upperboundon on Ay(P}) even when

a=0(1/k).
9. MATROID

One general situation in which Lemma 7.1 holds (and hence fast mixing) is when the set system
Y(0)U---UY(d) is a matroid.
A matroid is a family Z of subsets over a ground set U that is:
(1) Nonempty: Z # ()
(2) Downward closed: If A€ Z and B C A, then BeZ
(3) Exchangable: If A, B € T and |A| > |B|, then there is e € A\ B such that BU{e} € Z

Turns out all maximal A € Z have the same size d (called the rank of the matroid).

The family of acyclic edges in a graph G is an example of a matroid. The ground set U is the
set F of edges in GG. A subset F' C U belongs to Z if F' is acyclic. Maximal F' € 7 are spanning
trees in G. This matroid has rank n — 1, where n is the number of vertices in G. Fast mixing over
spanning trees is thus a special case.
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