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Notes 20: Sampling spanning trees by random walk

1. Random spanning trees

Fix a connected graph G = (V,E) on n vertices. A spanning tree in G is an acyclic subgraph of
G containing n− 1 edges.

We want to sample a spanning tree of G, (nearly) uniformly at random, as follows.
Random walk on spanning trees

Let T0 be an arbitrary spanning tree of G
For t = 0, 1, 2, . . .

Remove an edge from Tt uniformly at random to obtain Ft

Among all spanning trees containing Ft, uniformly pick one as the new Tt+1

This is a random walk/Markov chain on an auxiliary weighted graph TG, whose nodes are spanning
trees in G, and two nodes in TG are adjacent if they share exactly n− 2 edges.

For decades, this random walk was conjectured to mix in polynomial time. It was recently proved
by Anari, Liu, Oveis Gharan, and Vinzart.

Theorem 1.1. The above random walk has eigenvalue gap at least 1/(n− 1).

Eigenvalue gap β is the difference λ1 − λ2 between the two largest eigenvalues. By results in
Notes12, the lazy version of the random walk mixes in polynomial time. Recall that the lazy
random walk mixes in time O((log |V (TG)|)/β). Since |V (TG)| 6

( (n
2

)
n−1

)
6

(
n2

n−1

)
6 n2(n−1) =

exp(O(n logn)), the lazy random walk mixes in time O(n2 logn).

2. Bipartite inclusion graphs

Since the ambient graph G is fixed, we identify a spanning tree T in G with the set of n−1 edges
in T .

Denote by Y (n− 1) the sets of edges of spanning trees in G. More generally, define

Y (k) =
{
F ∈

(
E
k

)
| F is acyclic

}
for 0 6 k 6 n− 1 .

Decompose the random walk over spanning trees into two transitions:
• (Down) Go from Tt ∈ Y (n− 1) to Ft ∈ Y (n− 2) by removing an edge uniformly at random
• (Up) Then from Ft to Tt+1 ∈ Y (n−1) by choosing Tt+1 uniformly from among all Tt+1 ⊃ Ft

Down transition corresponds to matrix Dn−1, which is Y (n − 1)-by-Y (n − 2) (recall that a row
probability vector multiplies on the left to a transition matrix). Likewise up transition corresponds
to matrix Un−1, which is Y (n− 2)-by-Y (n− 1).

Dn−1Un−1 is the transition matrix for the random walk. We want to bound β(Dn−1Un−1).
We think of up and down transitions as random walk transitions on the auxiliary graph Γn−1:

Definition 2.1 (Bipartite inclusion graph). For 0 6 k 6 n− 1, Γk has vertex set Y (k) ∪ Y (k − 1).
F ∈ Y (k) is adjacent to F ′ ∈ Y (k − 1) if F ⊃ F ′.

We will look at Γk for 0 6 k 6 n− 1 later on to apply induction.
In Γk, down transition means moving from F ∈ Y (k) to a random neighbor F ′ ∈ Y (k − 1),

uniformly from among all k neighbors of F .
We will define up transition matrix Uk shortly, to move from F ′ ∈ Y (k−1) to a random neighbor

F ∈ Y (k) from some distribution.
Thanks to the following proposition, Dn−1Un−1 and Un−1Dn−1 have the same eigenvalue gap,

whenever this gap is at most 1.

Proposition 2.2. Given any matrices A and B, AB and BA have the same non-zero eigenvalues
with the same multiplicities.
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This proposition can be proved by showing AB and BA have essentially the same characteristic
polynomials. Look up “Characteristic polynomials” on Wikipedia if interested.

Kaufman and Oppenheim came up with a way to relate β(Un−1Dn−1) to β(Dn−2Un−2). Of
course, β(Dn−2Un−2) = β(Un−2Dn−2). One can then inductively bound β(UkDk) = β(DkUk).

Proposition 2.3 (Kaufman–Oppenheim). β(DkUk) > 1/k for 1 6 k 6 n− 1.

This main proposition implies the main theorem.

3. Random walk on bipartite graph

Up and down transitions Uk and Dk in Γk are special cases of random walk on bipartite graph.

3.1. General bipartite graph. Consider bipartite graph Γ on vertex set T ∪B (“top” and “bot-
tom”) with weight µ over its edges.

Further assume µ is a distribution: nonnegative weight on edges summing to 1.
Choosing an edge (t, b) ∈ T ×B from µ induces marginal distribution πT on T , and marginal πB

on B.
The marginal probability πT (t) coincides with the degree of t ∈ T (sum of edge weights incident

to t). Similarly πB(b) is the degree of b ∈ B.

The simple random walk on Γ with edge weights µ has transition matrix
(
O D
U O

)
.

D denotes (“down”) transition from T to B; U denotes (“up”) transition from B to T .
Distribution π = (12πT ,

1
2πB) over T ∪B is stationary for the random walk, because its probability

masses are proportional to vertex degrees.(
1
2π

>
T

1
2π

>
B

)
=

(
1
2π

>
T

1
2π

>
B

)(O D
U O

)
=

(
1
2π

>
BU

1
2π

>
T D

)
, so

π>
T D = π>

B and π>
BU = π>

T .

3.2. Bipartite inclusion graph Γk. Then T = Y (k) and B = Y (k − 1).
Edge weight µ = µk will be chosen later so that D = Dk. That is, random walk from T to B

according to µk corresponds to uniformly dropping an element from t ∈ T .
We want transition probabilities µk(t, b)/πT (t) from t to any of its neighbor b to be 1/k, so

µk(t, b) =
πT (t)

k
for every edge (t, b) in Γk.

Uk will be up transition matrix U in Γk, i.e. random walk from B to T according to µk.
Uk coincides with this transition: Given b ∈ B, choose neighbor t of b with probability propor-

tional to πT (t). This is because

Uk(b, t) =
µk(t, b)

πB(b)
=

1

πB(b)

πT (t)

k
∝ πT (t) .

4. n-bipartite inclusion graph

We can visualize using the n-bipartite inclusion graph Γn−1 ∪ · · · ∪ Γ1.
We now define edge weights µk’s for every layer so that
(A) Every µk is a distribution over edges in Γk

(B) Down transition in Γk according to µk is Dk

(C) The top marginal of µn−1 is the uniform over Y (n− 1)
(D) Top marginal distribution of µk−1 in Γk−1 equals bottom marginal distribution of µk in Γk

(so as to relate β(UkDk) in Γk to β(Dk−1Uk−1) in Γk−1)
This is done by the following random process of choosing a path (Fn−1, . . . , F0) on Γn−1∪· · ·∪Γ1:
(1) Choose Fn−1 ∈ Y (n− 1) uniformly at random
(2) For k from n− 1 to 1, drop a uniformly random edge in Fk to get Fk−1 ∈ Y (k − 1)
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Fk in this random path has marginal distribution πk over Y (k). πk is both the top marginal of
µk in Γk and bottom marginal of µk+1 in Γk+1.

The joint marginal of (Fk, Fk−1) ∈ Y (k)× Y (k − 1) induces edge distribution µk for Γk.
π>
k Dk = π>

k−1 and π>
k−1Uk = π>

k , so both DkUk and Uk+1Dk+1 have stationary distribution πk.
πn−1 is uniform over Y (n− 1). Un−1 defined here agrees with §2 since Un−1(b, t) ∝ πn−1(t) ∝ 1.
For some applications, one may want to sample from a nonuniform target distribution π over

spanning trees in Y (n − 1). For example, G may have edge weights w, and a natural distribution
π on spanning trees T would be proportional to the product of edge weights in T , so that π(T ) ∝∏

e∈T w(e).
We need to change the edge weights µk, so that they now satisfy
(C’) The top marginal of µn−1 is π

This can be done by changing the first step of the random process of the path (Fn−1, . . . , F0):
(1’) Choose Fn−1 ∈ Y (n− 1) from π

Step (2) remains the same. Changing initial distribution π in step (1) will affect edge distributions
µk in Γk and marginals πk on Y (k).

Everything in our analysis still holds given any target distribution π over Y (n− 1).

5. Up-walk and down-walk

In Γk, layer k of the n-partite inclusion graph, there are two natural two-step walks:
• Up-walk P∧

k−1 = UkDk on a weighted graph on vertex set Y (k − 1)
• Down-walk P∨

k = DkUk on a weighted graph on vertex set Y (k)

Focusing on Γk, abbreviate

T = Y (k) B = Y (k − 1) µ = µk

5.1. Down-walk. P∨
k = DkUk induces a random walk on a weighted graph on T .

A step in P∨
k also corresponds to a length-2 walk in Γk, from T to B to T .

P∨
k (t, t

′) =



∑
b∈B, b⊂t

µ(t, b)

πk(t)

µ(t′, b)

πk−1(b)
t = t′

µ(t, b)

πk(t)

µ(t′, b)

πk−1(b)
t ∩ t′ = b ∈ B

0 otherwise

.

5.2. Up-walk. P∧
k−1 = Uk−1Dk−1 corresponds to the random walk on a weighted graph on B.

A step in P∧
k−1 also corresponds to a length-2 walk in Γk, from B to T to B.

P∧
k−1(b, b

′) =


1/k b = b′

µ(t, b)

πk−1(b)

µ(t, b′)

πk(t)
b ∪ b′ = t ∈ T

0 otherwise

.

5.3. Non-lazy up-walk. P̃∧
k−1 is the non-lazy version of P∧

k−1.
A step in P̃∧

k−1 also corresponds to a length-2 path in Γk, from B to T to a different vertex in B.

P∧
k−1 =

1

k
I +

k − 1

k
P̃∧
k−1 .

πk−1 is stationary for both P∧
k−1 and P̃∧

k−1, as a common left-eigenvector with eigenvalue 1.
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6. Spectral comparison

We now upperbound the spectrum of P̃∧
k by the spectrum of P∨

k . It is more convenient to first
transform each of them into a symmetric matrix with the same spectrum.

P̃∧
k and P∨

k share a common stationary distribution πk. These transitions are both of the form
P (b, b′) = AP (b, b

′)/πk(b) for symmetric AP , so P = Π−1AP , where Π = Diag(πk). They both
represent a random walk with adjacency matrix AP = ΠP and common degree matrix Π.

Definition 6.1. Given matrices P,Q,Π, if ΠP,ΠQ are symmetric, we write

P 4Π Q ⇐⇒ ΠP 4 ΠQ .

P 4Π Q is equivalent to Π1/2PΠ−1/2 4 Π1/2QΠ−1/2, if Π is symmetric and Π � 0.
Since P is similar to the symmetric matrix AP = Π1/2PΠ−1/2 (the normalized adjacency matrix),

they have the same spectra.
In our application, P and Q often represent transitions with a common stationary distribution

(the main diagonal of Π). AP and AQ will have the same top eigenspace (spanned by 1). Applying
Courant–Fishcer to the orthogonal subspace,

P 4Π Q ⇐⇒ AP 4 AQ =⇒

λ2(AP ) = sup
x⊥1, ‖x‖=1

x>APx 6 sup
x⊥1, ‖x‖=1

x>AQx = λ2(AQ) ,

and hence λ2(P ) = λ2(AP ) 6 λ2(AQ) = λ2(Q).

Proposition 6.2. For 1 6 k 6 n− 2, let Π = Diag(πk). Then P̃∧
k 4Π P∨

k .

This proposition is proved in the next section. We now show how it implies Proposition 2.3.

Proof of Proposition 2.3. λ1(P
∨
k ) = 1. We prove by induction that λ2(P

∨
k ) 6 1− 1

k
=

k − 1

k
.

When k = 1, P∨
k has rank 1, so λ2(P

∨
k ) = 0 6

k − 1

k
.

For k > 1, P̃∧
k−1 4Π P∨

k−1 by Proposition 6.2, so λ2(P̃
∧
k−1) 6 λ2(P

∨
k−1) 6

k − 2

k − 1
.

Also λ2(P
∧
k−1) =

1

d
+

k − 1

k
λ2(P̃

∧
k−1) 6

k − 1

k
.

P∧
k−1 = UkDk and P∨

k = DkUk share the same non-zero eigenvalues, thus λ2(P
∨
k ) 6

k − 1

k
. �

7. Garland’s method

We now discuss Proposition 6.2 that bounds P̃∧
k by P∨

k .
Focusing on adjacent layers Γk+1 ∪ Γk, abbreviate

T = Y (k + 1) M = Y (k) B = Y (k − 1) (“top” “middle” “bottom”)

Garland method decomposes transitions of P∨
k and P̃∧

k into unions of subgraphs.

7.1. Down-walk. A step in P∨
k = DkUk represents a length-2 walk (m, b,m′) from M to B to M .

Decompose P∨
k =

∑
b∈B

P∨
b based on the bottom vertex b of (m, b,m′).

P∨
b also corresponds to transitions on a weighted clique (with self-loops) over Sb ⊆ M , where

Sb = {m ∈ M | m ⊃ b} .

7.2. Non-lazy up-walk. A step in P̃∧
k represents a length-2 path (m, t,m′) from M to T to a

different vertex in M . Decompose P̃∧
k =

∑
b∈B

P̃∧
b based on the common intersection b = m ∩m′ of

this path.
P̃∧
b also corresponds to transitions on the weighted graph Hb = (Sb, Eb) over Sb with edge set

Eb = {(m,m′) ∈ Sb × Sb | m ∪m′ ∈ T} .
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7.3. Spectra. The down-walk and non-lazy up-walk are now decomposed into subgraphs on Sb,
over various b ∈ B.

For P∨
b , the subgraph (with adjacency matrix ΠP∨

b ) is a clique with self-loops.
For P̃∧

b , the subgraph Hb (with adjacency matrix ΠP̃∧
b ) has its edges determined by Y (k + 1).

Kaufman and Oppenheim proved that Proposition 6.2 still holds “when restricted to these two
subgraphs on Sb”.

Lemma 7.1. For 1 6 k 6 n− 2 and b ∈ Y (k − 1), let Π = Diag(πk). Then P̃∧
b 4Π P∨

b .

This lemma is proved in the next lecture. Summing over b ∈ Y (k − 1) yields Proposition 6.2.
For P∨

b : It has rank 1 since ΠP∨
b = µbµ

>
b /πk−1(b) (µb is the vector of edge weights incident to b).

Therefore λ2(P
∨
b ) = · · · = λn(P

∨
b ) = 0, and ΠP∨

b is a clique that mixes perfectly in one step.
For P̃∧

b : Turns out P̃∧
b and P∨

b share the same top eigenvector with the same eigenvalue.
Therefore P̃∧

b 4Π P∨
b is equivalent to λ2(P̃

∧
b ) 6 0.

In particular P̃∧
b must be a weighted expander.

8. Variations

Suppose you want apply the same random walk algorithm to a different setting, such as
• Uniformly sample a path of length d in a graph G; or
• Uniformly sample a clique of size d in a graph G.

Does the same random walk mix quickly in these settings?
All the constructions still make sense in those settings ((k + 1)-partite inclusion graph, up- and

down-walks, Garland’s decomposition). But Lemma 7.1 may or may not hold.
Turns out P∨

b from the previous section will still has rank 1 and represents a perfectly mixing
weighted clique with λ2(P

∨
b ) = · · · = λn(P

∨
b ) = 0.

But now P̃∧
b may not represent weighted expanders and may violate λ2(P̃

∧
b ) 6 0, because the

subgraphs Hb depend crucially on Y (k+1) (and also indirectly on distribution π at the top layer).
They might only satisfy the weaker bound λ2(P̃

∧
b ) 6 α for some 0 6 α 6 1, depending on the

situation. So P̃∧
b are only α-expanders. This α upperbounds the error when you approximate the

clique of P∨
b by the α-expander of P̃∧

b . We will discuss this general situation in the next lecture.
If you can only show λ2(P̃

∧
b ) 6 α for all b ∈ Y (k) and 1 6 k 6 d − 1, then the conclusion of

Proposition 6.2 is weakened to be P̃∧
k 4Π P∨

k + αI. And in the proof of Proposition 2.3, you get
the weaker bound λ2(P

∨
k ) 6 1 − 1

k + α(k − 1), since the error accumulates in the induction. This
might still give you something useful if α is tiny (at most roughly 1/k2).

With a more careful analysis, Alev et al can get a nontrivial upperboundon on λ2(P
∨
k ) even when

α = Θ(1/k).

9. Matroid

One general situation in which Lemma 7.1 holds (and hence fast mixing) is when the set system
Y (0) ∪ · · · ∪ Y (d) is a matroid.

A matroid is a family I of subsets over a ground set U that is:
(1) Nonempty: I 6= ∅
(2) Downward closed: If A ∈ I and B ⊆ A, then B ∈ I
(3) Exchangable: If A,B ∈ I and |A| > |B|, then there is e ∈ A \B such that B ∪ {e} ∈ I

Turns out all maximal A ∈ I have the same size d (called the rank of the matroid).
The family of acyclic edges in a graph G is an example of a matroid. The ground set U is the

set E of edges in G. A subset F ⊆ U belongs to I if F is acyclic. Maximal F ∈ I are spanning
trees in G. This matroid has rank n− 1, where n is the number of vertices in G. Fast mixing over
spanning trees is thus a special case.
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