
CSCI5160 Approximation Algorithms Spring 2020
Lecturer: Siu On Chan Scribe: Siu On Chan

Notes 15: Expanders

1. Expanders

We will consider regular unweighted graphs unless otherwise specified. Self-loops are allowed.
There are a few different definitions of expanders (i.e. well-connected graphs) in the literature:
• (Edge expanders) For every S ⊆ V with |S| 6 |V |/2, many edges go across S and S:

ϕ(S) =
w(S, S)

d(S)
> γ

• (Spectral expanders) Largest two eigenvalues λ1 and λ2 of A has a large gap:
λ1 − λ2 > γ

• (Vertex expanders) For every S ⊆ V with |S| 6 |V |/2, many vertices outside of S is adjacent
to S:

|N(S) \ S|
|S|

> γ ,

where N(S) = {i ∈ V | (i, j) ∈ E for some j ∈ S} is the set of neighbors of S
These definitions are related to each other. Cheeger–Alon–Milman shows that the first two

definitions are equivalent (with possibly different γ). We will later see that spectral expanders
satisfying an additional condition are vertex expanders (again with different γ).

The complete graph Kn with self-loops on n vertices satisfies all of the above definitions with γ
bounded away from 0 (and independent of n). Here Kn is the graph that contains an edge (i, j) for
every unordered pair of vertices i and j, including when i = j. Its adjacency matrix A is the all-one
matrix J .

Kn is dense and has Θ(n2) edges. Interestingly, there are sparse expanders with only O(n) edges.

2. Spectral radius

In fact, we will look at graphs with small spectral radius. Given a d-regular graph with normalized
adjacency matrix A (= A/d), its spectral radius λ is max{|λ2|, |λn|}. In other words, the maximum
magnitude of all non-trivial eigenvalues of A. (Recall that the largest eigenvalue λ1 of A is trivially
d, with eigenvector 1. All other eigenvalues λ2 > . . . > λn are non-trivial.) In particular, a graph
with spectral radius 1− γ is a spectral expander.

Graphs with small spectral radius are good approximators of Kn. Indeed, a graph has small
spectral radius if and only if its Laplacian is close that of Kn, properly scaled.

Claim 2.1. Let H be the weighted graph with adjacency matrix d
nJ . A d-regular graph G on n

vertices has spectral radius at most λ if and only if ‖LG − LH‖ 6 λd.

Again the above norm is the operator norm. For a real symmetric matrix, its operator norm
equals the largest eigenvalue (in absolute value).

Proof. G has spectral radius at most λ if and only if all non-trivial eigenvalues of its adjacency
matrix AG are in the range [−λd, λd]. This holds if and only if all non-trivial eigenvalues of
LG = DG − AG = dI − AG are in the range [d − λd, d + λd]. All these eigenvalues correspond to
the eigenspace orthogonal to the eigenvector 1. That is, for every x ⊥ 1, Courant–Fischer tells us

(d− λd)x>x 6 x>LGx 6 (d+ λd)x>x .

For H, all non-trivial eigenvalues of its adjacency matrix AH are 0, and the largest eigenvalue is
d
n . All non-trivial eigenvalues of LH = dI − AH are d. Again these eigenvalues correspond to the
eigenspace orthogonal to the eigenvector 1. That is, for every x ⊥ 1,

x>LHx = dx>x .

Therefore for every x ⊥ 1,
|x>(LG − LH)x| 6 λdx>x .

Since LG − LH is a real symmetric matrix, this is equivalent to ‖LG − LH‖ 6 λd.
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We have only considered x ⊥ 1, because 1 is a common eigenvector of LG and LH of eigenvalue
0. �

It is well-known that a random d-regular graph on n vertices has small spectral radius (bounded
away from 1) with high probability. If you are curious, you may read Chapter 8 of “Expander
Graphs and Their Applications” by Hoory, Linial, and Wigderson. We will see that graphs with
small spectral radius in turn behave like random graphs.

3. Pseudorandom properties from spectral radius

Given a graph G = (V,E) and subsets S ⊆ V and T ⊆ V , let
←→
E (S, T ) = {(u, v) | u ∈ S, v ∈

T, (u, v) ∈ E} be the set of directed edges with one endpoint in S and another endpoint in T . We are
counting the number of directed edges (ordered pairs), so an undirected edge with both endpoints
in S ∩ T is counted twice.

If a graph is generated as a random d-regular graph, we expect each edge to appear with proba-
bility d

n , so in expectation there are d
n |S||T | edges in

←→
E (S, T ). This behavior holds approximately

in graphs with small spectral radius.

Lemma 3.1 (Expander Mixing Lemma). Let G be a d-regular graph with spectral radius λ. For
every S ⊆ V and T ⊆ V , ∣∣∣∣∣∣∣←→E (S, T )

∣∣∣− d

n
|S||T |

∣∣∣∣ 6 λd
√
|S||T | .

Proof. Note that

1
>
SLG1T = 1

>
S (dI −AG)1T = d|S ∩ T | −

∣∣∣←→E (S, T )
∣∣∣ .

Since G is a good approximator of H (defined in Claim 2.1),

1
>
SLH1T = 1

>
S

(
dI − d

n
J

)
1T = d|S ∩ T | − d

n
|S||T | .

So ∣∣∣←→E (S, T )
∣∣∣− d|S||T |

n
= 1

>
SLH1T − 1>SLG1T .

Since G has spectral radius λ,

1
>
S (LG − LH)1T 6 ‖1S‖‖(LG − LH)1T ‖ 6 ‖1S‖‖LG − LH‖‖1T ‖ = λd

√
|S||T | . �

One can slightly strengthen the above bound. Let α = |S|/n and β = |T |/n be the fractional size
of S and T . We can orthogonalize 1S and 1T with respect to 1 and get

1
>
S (LG − LH)1>T = (1S − α1)>(LG − LH)(1T − β1) .

Also
‖1S − α1‖‖1T − β1‖ = n

√
(α− α2)(β − β2) .

This yields the improved bound∣∣∣∣∣∣←→E (S, T )
∣∣∣− αβdn

∣∣∣ 6 λdn
√

(α− α2)(β − β2) .

4. Vertex expansion

Theorem 4.1 (Tanner). Let G be a d-regular graph with spectral radius λ. Then for every S ⊆ V
of fractional size α = |S|/n,

|N(S)| > |S|
λ2(1− α) + α

.

This gives a strong bound for subsets that are very small, i.e. α much smaller than λ2. For this
α, the lowerbound is approximately |S|/λ2, so the neighborhood has much more vertices than |S|.
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Proof. We apply (strengthened) Lemma 3.1 with T = V \N(S). Let δ = |N(S)|/n, so δ = 1 − β.
There are no edges between S and T , and it must hold that

αβdn 6 λdn
√

(α− α2)(β − β2) .

We get the lowerbound by rearranging terms.
α2β2 6 λ2(α− α2)(β − β2) ⇐⇒ αβ 6 λ2(1− α)(1− β) ,

which is the same as
β

1− β
6

λ2(1− α)

α
⇐⇒ 1− δ

δ
6

λ2(1− α)

α
,

and is equivalent to
1

δ
6

λ2(1− α) + α

α
⇐⇒ δ >

α

λ2(1− α) + α
. �

5. Random walk on expanders

Consider (t − 1)-step random walk in a regular graph G starting from a uniformly distributed
initial vertex v0. If G is the complete graph Kn with self-loops, the random walk (v0, . . . , vt−1) is
simply a sequence of t independent vertices, uniformly distributed. Now if G is a graph with small
spectral radius, the vertices v0, . . . , vt in the random walk are no longer independent of each other.
Remarkably, random walk on G still behaves similarly to random walk on Kn.

For example, let S ⊆ V be any subset of vertices. If we look at the number of times the random
walk hits S, this number will be very close to its expectation t|S|/n. More generally, let f : V → [0, 1]
be any bounded function (such as f = 1S). Let λ be the spectral radius of the regular graph G.

Theorem 5.1 (Chernoff Bound for expanders).

P

[
1

t

∑
06i<t

f(vi) > E
v∈V

f(v) + ε+ λ

]
6 exp(−Ω(ε2t)) .

Note that when λ = 0, we recover the usual Chernoff bound (up to the hidden constant in the
big-Ω).

We will not prove this theorem.
The theorem implies that the success rate of a randomized algorithm can be amplified using a

random walk on expanders. Suppose you have an algorithm that, given any input, outputs the
correct yes/no answer 70% of the time, where the probability is over the random bits used by the
algorithm. You can amplify the success probability by repeating the algorithm and taking the
majority vote. But repeating the algorithm many times requires a lot of random bits. One way to
save random bits is to perform random walk on d-regular graphs with d not too big (say d = 100)
and small spectral radius λ.

We associate the vertex set V of the graph G with the random bitstings used by a single run of the
randomized algorithm. The subset S ⊆ V corresponds to those random bits where the algorithm
yields incorrect outputs. Taking a (t − 1)-step random walk, the chance that more than half of
the bitstrings cause the algorithm to err is exponentially small in t. How many random bits do we
need to generate the bitstrings? log2 n for v0, plus log2 d per step of the walk (to choose a random
neighbor), for a total of log2 n + (t − 1)(log2 d) random bits. This is much fewer than t log2 n bits
required to generate t independent bitstrings.
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