CSCI5160 Approximation Algorithms Spring 2020 *Lecturer: Siu On Chan Scribe: Siu On Chan*

Notes 11: Cheeger–Alon–Milman inequality

1. LOCAL SWEEP CUT

We now prove the hard direction of Cheeger–Alon–Milman inequality from the previous lecture.

Theorem 1.1 (Cheeger–Alon–Milman). $\varphi(G) \leq \sqrt{2}$ $\overline{2\lambda_2}$.

The proof is a "rounding algorithm" that converts any $y \in \mathbb{R}^V$ with small Rayleigh quotient $R(y) = \frac{y^{\top}Ly}{\top \mathbf{p}}$ $\frac{y - 2y}{y^{\top}Dy} =$ $\sum_{(i,j)\in E} w_{ij} (y_i - y_j)^2$ $\sum_{i\in V} d(i)y_i^2$ into a subset S with small conductance.

Lemma 1.2. *Given any* $y \in \mathbb{R}^V$ *, there is an algorithm to find* $S \subseteq \text{supp}(y)$ *with* $\varphi(S) \leq \sqrt{2R(y)}$ *.*

Here $supp(y) = \{i \in V \mid y_i \neq 0\}$ denotes the support of y.

How to turn $y \in \mathbb{R}^V$ into a subset? We saw from last lecture that if y is the indicator $\mathbb{1}_T$ of some subset $T \subseteq V$, then $R(y) = \varphi(T)$. It is natural to consider rounding by thresholding: Choose threshold $t \in \mathbb{R}$ and output $S_t = \{i \in V \mid y_i > t\}.$

The algorithm instead output $S_t = \{i \in V \mid y_i^2 > t\}$. The squaring allows us to relate conductance to Rayleigh quotient, which involves squared terms $(y_i - y_j)^2$ and y_i^2 in the numerator and denominator, respectively.

Proof of [Lemma 1.2.](#page-0-0) Imagine threshold t increases from zero to infinity, and $S_t = \{i \in V \mid y_i^2 > t\}$ shrinks from supp (y) to \emptyset . The cut weight $w(S_t, \overline{S}_t)$ and total degree $d(S_t)$ also changes as t grows.

We will assume all $|y_i| \leq 1$, as scaling y by a constant does not affect $R(y)$. We will also pick $t \in [0,1]$ uniformly at random. We now analyze the expected cut weight $\mathbb{E}_t[w(S_t, \overline{S}_t)]$ and expected total degree $\mathbb{E}_t[d(S_t)].$

$$
\mathbb{E}[w(S_t, \overline{S}_t)] = \sum_{(i,j)\in E} w_{ij} \mathbb{E}[\mathbb{1}((i,j) \text{ is cut by } S_t)]
$$

\n
$$
= \sum_{(i,j)\in E} w_{ij} (y_j^2 - y_i^2) \qquad \text{assuming } y_i^2 \leq y_j^2
$$

\n
$$
= \sum_{(i,j)\in E} w_{ij} (y_j - y_i)(y_j + y_i) \leq \sqrt{\sum_{(i,j)\in E} w_{ij} (y_j - y_i)^2} \sqrt{\sum_{(i,j)\in E} w_{ij} (y_j + y_i)^2}
$$

The inequality is Cauchy–Schwarz. The first term under square-root is the numerator of the Rayleigh quotient. For the second term under square-root,

$$
\sum_{(i,j)\in E} w_{ij}(y_i + y_j)^2 \leq \sum_{(i,j)\in E} w_{ij} 2(y_i^2 + y_j^2) = 2 \sum_{i\in V} d(i) y_i^2.
$$

Altogether,

$$
\mathbb{E}[w(S_t, \overline{S}_t)] \leqslant \sqrt{\sum_{(i,j)\in E} w_{ij}(y_j - y_i)^2} \sqrt{2 \sum_{i\in V} d(i) y_i^2}.
$$

Now for the expected total degree,

$$
\mathop{\mathbb{E}}_t[d(S_t)] = \sum_{i \in V} d(i) \mathop{\mathbb{E}}_t[\mathbb{1}(i \in S_t)] = \sum_{i \in V} d(i) y_i^2.
$$

So their ratio satisfies

$$
\frac{\mathbb{E}_t[w(S_t, \overline{S}_t)]}{\mathbb{E}_t[d(S_t)]} \leqslant \sqrt{2R(y)}.
$$

By the following proposition, there must be some choice of $t = t_*$ such that

$$
\varphi(S_{t_*}) = \frac{w(S_{t_*}, S_{t_*})}{d(S_{t_*})} \leqslant \sqrt{2R(y)} . \square
$$

$$
\frac{f(t_*)}{g(t_*)} \leqslant \frac{\mathbb{E}_t[f(t)]}{\mathbb{E}_t[g(t)]} .
$$

Proof. Let $C = \mathbb{E}_t[f(t)] / \mathbb{E}_t[g(t)]$, so that

$$
0 = \mathop{\mathbb{E}}_t[f(t)] - C \mathop{\mathbb{E}}_t[g(t)] = \mathop{\mathbb{E}}_t[f(t) - Cg(t)].
$$

There must be some choice of $t = t_*$ such that the term in the expectation is nonpositive:

$$
f(t_*) - Cg(t_*) \leq 0 \qquad \Longleftrightarrow \qquad \frac{f(t_*)}{g(t_*)} \leqslant C = \frac{\mathbb{E}_t[f(t)]}{\mathbb{E}_t[g(t)]} \; . \qquad \Box
$$

The algorithm in [Lemma 1.2](#page-0-0) can find small conductance S_{t*} deterministically: Simply try all thresholds t that lead to different $S_t = \{i \in V \mid y_i^2 > t\}$, and output the one with the smallest conductance. There are at most n choices for t once vertices are sorted according to y_i^2 .

2. From orthogonality to small support

Does [Lemma 1.2](#page-0-0) prove [Theorem 1.1?](#page-0-1) Not yet, the subset S_{t_*} produced need not contain at most half of the total degree. It may even be the case that $S_{t_*} = V$.

But we also did not exploit the orthogonality condition: that $\sum_{i\in V} d(i)y_i = 0$. In this section, given $y \in \mathbb{R}^V$ with small Rayleigh quotient and satisfying the orthogonality condition, we will produce two vectors $z_$ and z_+ both with "small support", and apply the algorithm in previous section to $z_$ or z_+ .

Note that the numerator of the Rayleigh quotient does not change if all entries of y are shifted by the same $c \in \mathbb{R}$. Among all shifts $z = y + c \mathbb{I}$, the denominator of the Rayleigh quotient is minimized when $\sum_{i\in V} d(i)z_i = 0$, because the quadratic form $z^{\top}Dz = \sum_{i\in V} d(i)z_i^2$ has derivative (with respect to c) $2\sum_{i\in V} d(i)z_i$.

Assume without loss of generality that y is sorted, so that $y_1 \leq \ldots \leq y_n$. Find the smallest j such that $\sum_{1 \leq i \leq j} d(i) \geq d(V)/2$. We will then shift y by $c = -y_j$ to obtain $z = y - y_j 1$. The previous paragraph implies that $R(z) \le R(y)$, because the numerator stays the same but the denominator can only increase after the shift.

Note that $z_j = 0$. The above choice of j ensures *both* sets $S = \{i \in V \mid y_i \lt y_j\} = \{i \in V \mid z_i \lt \}$ 0} and $S_+ = \{i \in V \mid y_i > y_j\} = \{i \in V \mid z_i > 0\}$ contain at most half of the total degree of V. We will take the positive and negative part of z to get z_+ and z_- :

$$
z_{-} = \begin{cases} z_i & z_i < 0 \\ 0 & \text{otherwise} \end{cases} \qquad \text{and} \qquad z_{+} = \begin{cases} z_i & z_i > 0 \\ 0 & \text{otherwise} \end{cases}
$$

.

We now show $z_$ or z_+ has Rayleigh quotient at most that of z.

Lemma 2.1. min $\{R(z_-,), R(z_+)\} \le R(z)$.

D

Proof. $z^{\top}Dz = z_+^{\top}Dz_+ + z_-^{\top}Dz_-,$ because left-hand-side is a weighted sum of z_i^2 , and each nonzero z_i^2 is counted in z_+ or z_- .

 $z^{\top}Lz \geqslant z_{+}^{\top}Lz_{+} + z_{-}^{\top}Lz_{-}$, because left-hand-side is a weighted sum of $(z_{i} - z_{j})^{2}$ over edges, and every edge that contribute to left-hand-side, it either get dropped if z_i and z_j have opposite signs, or is retained otherwise.

We have therefore shown $\frac{z^{\top} L z_{-} + z^{\top}_+ L z_{+}}{\top}$ $z_-^\top D z_-+z_+^\top D z_+$ $\leq R(z)$. The result follows once we can show $\min \Big\{ \frac{A}{\sigma}$ $\frac{A}{C}, \frac{B}{D}$ $\Big\} \leqslant \frac{A+B}{A}$ $\frac{A+B}{C+D}$. And it is implied by [Proposition 1.3.](#page-0-2)

3. Discussion

The task of finding subset of smallest conductance is known as Sparsest Cut. This problem is NP-hard, so we settle for an approximation algorithm.

By the above arguments, an algorithm to find a set S of small conductance is as follows:

(1) Compute an eigenvector y to the second smallest eigenvalue of $\mathcal L$

(2) Sort all entries of y so that $y_{i_1} \leq \ldots \leq y_{i_n}$, i.e. vertex i_1 has the smallest value, i_n the largest

(3) Try all cut of the form $S = \{i_1, \ldots, i_j\}$ (or \overline{S} , whichever has smaller total degree)

By both sides of Cheeger–Alon–Milmon, this algorithm is guaranteed to find a subset S with $\varphi(S) \leqslant 2\sqrt{\varphi(G)}.$

The approximation guarantee is quite bad if $\varphi(G)$ is very small, say order of $1/n$.

There are other approximation algorithm with better guarantee. There is an SDP-based approximation algorithm by Arora–Rao–Vazirani with approximation ratio $O(\sqrt{\log n})$.