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Notes 11: Cheeger–Alon–Milman inequality

1. Local sweep cut

We now prove the hard direction of Cheeger–Alon–Milman inequality from the previous lecture.

Theorem 1.1 (Cheeger–Alon–Milman). ϕ(G) 6
√
2λ2.

The proof is a “rounding algorithm” that converts any y ∈ RV with small Rayleigh quotient

R(y) =
y>Ly

y>Dy
=

∑
(i,j)∈E wij(yi − yj)

2∑
i∈V d(i)y2i

into a subset S with small conductance.

Lemma 1.2. Given any y ∈ RV , there is an algorithm to find S ⊆ supp(y) with ϕ(S) 6
√
2R(y).

Here supp(y) = {i ∈ V | yi 6= 0} denotes the support of y.
How to turn y ∈ RV into a subset? We saw from last lecture that if y is the indicator 1T of

some subset T ⊆ V , then R(y) = ϕ(T ). It is natural to consider rounding by thresholding: Choose
threshold t ∈ R and output St = {i ∈ V | yi > t}.

The algorithm instead output St = {i ∈ V | y2i > t}. The squaring allows us to relate conduc-
tance to Rayleigh quotient, which involves squared terms (yi − yj)

2 and y2i in the numerator and
denominator, respectively.

Proof of Lemma 1.2. Imagine threshold t increases from zero to infinity, and St = {i ∈ V | y2i > t}
shrinks from supp(y) to ∅. The cut weight w(St, St) and total degree d(St) also changes as t grows.

We will assume all |yi| 6 1, as scaling y by a constant does not affect R(y). We will also pick
t ∈ [0, 1] uniformly at random. We now analyze the expected cut weight Et[w(St, St)] and expected
total degree Et[d(St)].

E
t
[w(St, St)] =

∑
(i,j)∈E

wij E
t
[1((i, j) is cut by St)]

=
∑

(i,j)∈E

wij(y
2
j − y2i ) assuming y2i 6 y2j

=
∑

(i,j)∈E

wij(yj − yi)(yj + yi) 6
√ ∑

(i,j)∈E

wij(yj − yi)2
√ ∑

(i,j)∈E

wij(yj + yi)2

The inequality is Cauchy–Schwarz. The first term under square-root is the numerator of the Rayleigh
quotient. For the second term under square-root,∑

(i,j)∈E

wij(yi + yj)
2 6

∑
(i,j)∈E

wij2(y
2
i + y2j ) = 2

∑
i∈V

d(i)y2i .

Altogether,

E
t
[w(St, St)] 6

√ ∑
(i,j)∈E

wij(yj − yi)2
√
2
∑
i∈V

d(i)y2i .

Now for the expected total degree,

E
t
[d(St)] =

∑
i∈V

d(i)E
t
[1(i ∈ St)] =

∑
i∈V

d(i)y2i .

So their ratio satisfies
Et[w(St, St)]

Et[d(St)]
6

√
2R(y) .

By the following proposition, there must be some choice of t = t∗ such that

ϕ(St∗) =
w(St∗ , St∗)

d(St∗)
6

√
2R(y) . �
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Proposition 1.3. Let f and g be arbitrary real-valued integrable functions. There must be some
choice of t∗ such that

f(t∗)

g(t∗)
6

Et[f(t)]

Et[g(t)]
.

Proof. Let C = Et[f(t)]/Et[g(t)], so that
0 = E

t
[f(t)]− C E

t
[g(t)] = E

t
[f(t)− Cg(t)] .

There must be some choice of t = t∗ such that the term in the expectation is nonpositive:

f(t∗)− Cg(t∗) 6 0 ⇐⇒ f(t∗)

g(t∗)
6 C =

Et[f(t)]

Et[g(t)]
. �

The algorithm in Lemma 1.2 can find small conductance St∗ deterministically: Simply try all
thresholds t that lead to different St = {i ∈ V | y2i > t}, and output the one with the smallest
conductance. There are at most n choices for t once vertices are sorted according to y2i .

2. From orthogonality to small support

Does Lemma 1.2 prove Theorem 1.1? Not yet, the subset St∗ produced need not contain at most
half of the total degree. It may even be the case that St∗ = V .

But we also did not exploit the orthogonality condition: that
∑

i∈V d(i)yi = 0. In this section,
given y ∈ RV with small Rayleigh quotient and satisfying the orthogonality condition, we will
produce two vectors z− and z+ both with “small support”, and apply the algorithm in previous
section to z− or z+.

Note that the numerator of the Rayleigh quotient does not change if all entries of y are shifted
by the same c ∈ R. Among all shifts z = y + c1, the denominator of the Rayleigh quotient is
minimized when

∑
i∈V d(i)zi = 0, because the quadratic form z>Dz =

∑
i∈V d(i)z2i has derivative

(with respect to c) 2
∑

i∈V d(i)zi.
Assume without loss of generality that y is sorted, so that y1 6 . . . 6 yn. Find the smallest j such

that
∑

16i6j d(i) > d(V )/2. We will then shift y by c = −yj to obtain z = y − yj1. The previous
paragraph implies that R(z) 6 R(y), because the numerator stays the same but the denominator
can only increase after the shift.

Note that zj = 0. The above choice of j ensures both sets S− = {i ∈ V | yi < yj} = {i ∈ V | zi <
0} and S+ = {i ∈ V | yi > yj} = {i ∈ V | zi > 0} contain at most half of the total degree of V . We
will take the positive and negative part of z to get z+ and z−:

z− =

{
zi zi < 0

0 otherwise
and z+ =

{
zi zi > 0

0 otherwise
.

We now show z− or z+ has Rayleigh quotient at most that of z.

Lemma 2.1. min{R(z−), R(z+)} 6 R(z).

Proof. z>Dz = z>+Dz+ + z>−Dz−, because left-hand-side is a weighted sum of z2i , and each nonzero
z2i is counted in z+ or z−.

z>Lz > z>+Lz+ + z>−Lz−, because left-hand-side is a weighted sum of (zi − zj)
2 over edges, and

every edge that contribute to left-hand-side, it either get dropped if zi and zj have opposite signs,
or is retained otherwise.

We have therefore shown
z>−Lz− + z>+Lz+

z>−Dz− + z>+Dz+
6 R(z). The result follows once we can show

min
{
A

C
,
B

D

}
6

A+B

C +D
. And it is implied by Proposition 1.3. �

3. Discussion

The task of finding subset of smallest conductance is known as Sparsest Cut. This problem is
NP-hard, so we settle for an approximation algorithm.

By the above arguments, an algorithm to find a set S of small conductance is as follows:
(1) Compute an eigenvector y to the second smallest eigenvalue of L
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(2) Sort all entries of y so that yi1 6 . . . 6 yin , i.e. vertex i1 has the smallest value, in the largest
(3) Try all cut of the form S = {i1, . . . , ij} (or S, whichever has smaller total degree)

By both sides of Cheeger–Alon–Milmon, this algorithm is guaranteed to find a subset S with
ϕ(S) 6 2

√
ϕ(G).

The approximation guarantee is quite bad if ϕ(G) is very small, say order of 1/n.
There are other approximation algorithm with better guarantee. There is an SDP-based approx-

imation algorithm by Arora–Rao–Vazirani with approximation ratio O(
√

logn).
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