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Notes 04: Conjugate function

1. Convex functions

Definition 1.1. A real-valued function f : Rn → R on n-dimensional Euclidean space is convex if
for every x, y ∈ Rn and every 0 6 λ 6 1, we have

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y).

In other words, if we consider the graph of a function, defined as {(x, f(x)) | x ∈ Rn} ⊆ Rn ×R,
then f is convex if the line segment between any two points of the graph lies above or on the graph.

2. Conjugate function

We now define a dual object for every function f : Rn → R, called its conjugate.
We have defined dual objects for sets, using support functions. To define a dual object for a

function, we want to first turn f : Rn → R into a set.
Given a function f : Rn → R (not necessarily convex), its epigraph is epi f = {(x, t) ∈ Rn × R |

f(x) 6 t}.
Note that a function is convex if and only if its epigraph is a convex set, as can be easily checked.
The conjugate of a function f is essentially the support function of epi f , “simplified”.
The support function of epi f is Sepi f (y, s) = sup{〈y, x〉+ st | x ∈ Rn, f(x) 6 t}.
But if s > 0, Sepi f says nothing about f , because the supremum is +∞ by taking arbitrarily

large t. If s = 0, Sepi f also says nothing about f . Only when s < 0 does Sepi f capture information
about f . In this case we always choose t = f(x) in the supremum without changing the outcome.
Given any (y, s) with s < 0, we can renormalize (y, s) so that s = −1. This motivates the following
definition.

Definition 2.1. Given a function f : Rn → R, its conjugate f∗ : Rn → R is defined as
f∗(y) = sup{〈y, x〉 − f(x) | x ∈ Rn}.

Turns out f∗ is always convex even when f is not, since it is the pointwise supremum of convex
(in this case, affine) functions of y.

Under an additional technical assumption, we can indeed recover f as the conjugate of f∗.

Theorem 2.2. If F is convex and its epigraph is a closed set, then f∗∗ = f .

We will not prove this theorem; see [BV, Exercise 3.39].
In fact f∗∗ is the lower semi-continuous envelop of f , that is, the largest lower semi-continuous

function upper-bounded by f . (We will not define semi-continuous here; just think of it as a weaker
notion than continuity.)

Proposition 2.3 (Fenchel inequality). For any x, y ∈ Rn, 〈y, x〉 6 f∗(y) + f(x).

The proof follows from the definition of conjugate.
Examples of functions and their conjugates:

• Negative entropy. f(x) = x logx, defined for x > 0. Then f∗(y) = supx>0 yx− x logx
The supremum is achieved when 0 = d

dx(yx−x logx) = y−x( 1x)− logx ⇐⇒ x = ey−1

Hence f∗(y) = yey−1 − ey−1(y − 1) = ey−1

• Strictly convex quadratic form. f(x) = 1
2x

>Qx, where Q is a symmetric positive definite
matrix. Then f∗(y) = supx y

>x− 1
2x

>Qx.
The supremum is achieved when 0 = ∇(y>x− 1

2x
>Qx) = y −Qx ⇐⇒ x = Q−1y

Hence f∗(y) = y>Q−1y − 1
2(y

>Q−1>)Q(Q−1y) = 1
2y

>Q−1y
• Log-sum-exp. f(x) = log(

∑
16i6n e

xi). [BV, Example 3.25] shows that f∗(y) =
∑

i yi log yi,
the negative entropy function, restricted to the probability simplex (y > 0,

∑
16i6n yi = 1).
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