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Notes 17: Effective resistance
As in the last lecture, let H = (V,E) be a connected, undirected graph (representing an electrical

network) with positive edge weights w : E → R+.
The goal of this lecture is to develop tools for fast algorithms to approximately solve Laplace

equations.

1. Effective resistance

Given any nodes a and b, we can treat the whole electrical network H as a single resistor between
a and b. What is the resistance of this resistor?

If we inject one unit of external current at a and remove one unit of current at b, we can measure
the resulting potential difference v(a)− v(b). Ohm’s law tells us to expect

v(a)− v(b) = i(a, b)Reff(a, b) .

Thus, we define the effective resistance Reff(a, b) between a and b so that this equation holds.
This corresponds to the external current vector u = 1a − 1b. The above discussion implies the

voltage vector due to u is v = L+u. The potential difference v(a) − v(b), and hence Reff(a, b), is
(1a − 1b)

⊤L+(1a − 1b).
Since L is positive semidefinite, so is L+, and therefore it has a square-root L+/2. In terms of

spectral decomposition using nonnegative eigenvalues λℓ and orthonormal eigenvectors ψℓ,

L =
∑
ℓ

λℓψℓψ
⊤
ℓ =⇒ L+/2 =

∑
ℓ: λℓ>0

1√
λℓ
ψℓψ

⊤
ℓ .

Therefore

Reff(a, b) = (1a − 1b)
⊤L+(1a − 1b) = (1a − 1b)

⊤(L+/2)
⊤
L+/2(1a − 1b) = ‖L+/21a − L+/21b‖22 .

In other words, if we represent every node a as the vector L+/21a, then Reff(a, b) is the squared
Euclidean distance between the corresponding vectors L+/21a and L+/21b. This map a 7→ L+/21a

is sometimes called the effective resistance embedding.

2. Equivalent networks, Gaussian elimination

We just considered what happens when two nodes are under external influence — the rest of the
network can be represented as a single resistor. We now do the same when a subset B ⊆ V of nodes
are under external influence.

We call B the set of boundary nodes and I = V \B the set of internal nodes. You may imagine
that we can attach electrodes of batteries to nodes in B but not in I. So we can set voltages of
nodes in V , while voltages of nodes in I are determined by electrical flow of the batteries.

When B = V , the Laplace operator L maps voltage vector v ∈ RB to vector of external currents
u ∈ RB. Now for a general subset B ⊆ V , we want to find a matrix LB such that

uB = LBvB .

Turns out LB is a Laplacian matrix (easy exercise), and is obtained by applying Gaussian elimi-
nation to remove the internal nodes.

To be concrete, we take V = {1, . . . , n}, B = {2, . . . , n}, and we eliminate the internal node 1
using Gaussian elimination. Given any voltage vector vB ∈ RB, we want to find v ∈ RV such that
v(b) = vB(b) for every b ∈ B, and

0 = u(1) =
∑
b∼1

i(1, b) =
∑
b∼1

w(1, b)(v(1)− v(b)) .

Rearranging,

v(1) =
1

d(1)

∑
b∼1

w(1, b)v(b) .

1



2

This means v(1) is a weighted average of voltages of its neighbors b. It also means when solving
the Laplace equation u = Lv, we will substitute v(1) as the right-hand-side whenever v(1) appears.
The term v(1) only appears in the equation for u(a) when a is a neighbor of 1, and the equation is

u(a) = d(a)v(a)−
∑
b∼a

w(a, b)v(b) .

After substituting v(1), the equation for u(a) becomes

u(a) = d(a)v(a)−
∑

b∼a, b ̸=1

w(a, b)v(b)− w(1, a)

d(1)

∑
b∼1

w(1, b)v(b) .

One of the term in the last sum is in fact node a, so the equation should be rewritten as

u(a) = d(a)v(a)−
∑

b∼a, b ̸=1

w(a, b)v(b)− w(1, a)

d(1)

∑
b∼1,b ̸=a

w(1, b)v(b)− w(1, a)2

d(1)
v(a)

=

(
d(a)− w(1, a)2

d(1)

)
v(a)−

∑
b∼a, b ̸=1

w(a, b)v(b)− w(1, a)

d(1)

∑
b∼1,b ̸=a

w(1, b)v(b) .

This is exactly the result of applying Gaussian elimination to eliminate the variable v(1) using the
equation u(1) = 0.

3. Distance

A distance d (also known as a metric) is any real-valued function on pair of vertices such that
• (Nonnegativity) d(a, b) ⩾ 0 for any vertices a and b
• (Identity of indiscernibles) d(a, b) = 0 if and only if a = b
• (Symmetry) d(a, b) = d(b, a) for any a and b
• (Triangle inequality/subadditivity) d(a, c) ⩽ d(a, b) + d(b, c) for any a, b and c

We now argue that effective resistance Reff is a distance. The first three properties easily follow
from §1 of this notes. It remains to prove the last property (triangle inequality).

We need the following simple observation: Given a unit electrical flow from a to b, the corre-
sponding voltage vector v ∈ RV satisfies v(a) ⩾ v(c) ⩾ v(b) for any node c.

This observation holds because the voltage of any internal node c is a weighted average of its
neighbors. To formally prove it, one can first consider the equivalent network with boundary
B = {a, b, c}. The voltage of c in this equivalent network, after v(a) and v(b) are fixed, will be a
weighted average of v(a) and v(b), and hence between them.

Proposition 3.1. Reff(a, c) ⩽ Reff(a, b) +Reff(b, c).

Proof. Let ua,b = 1a − 1b be the external current for the unit current flow from a to b. Similarly,
ub,c = 1b − 1c and ua,c = 1a − 1c. Note that

ua,c = ua,b + ub,c .

Let va,b = L+ua,b be the voltage vector for ua,b. Likewise vb,c = L+ub,c and va,c = L+ua,c. By
linearity,

va,c = va,b + vb,c ,

and
Reff(a, c) = va,c(a)− va,c(c) = va,b(a)− va,b(c) + vb,c(a)− vb,c(c) .

By above observation, the first two terms

va,b(a)− va,b(c) ⩽ va,b(a)− va,b(b) = Reff(a, b)

and similarly vb,c(a)− vb,c(c) ⩽ vb,c(b)− vb,c(c) = Reff(b, c). □
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4. Equivalent electrical power

Effective resistance between a and b in a network is defined as the resistance of the equivalent
resistor. Turns out the network and its equivalent resistor share more common properties than just
the same resistance: they also dissipate the same power per unit flow.
Proof. The power dissipated per unit of a-b flow in the equivalent resistor is exactly Reff(a, b), due
to Joule’s law P = I2R.

The power dissipated in the network per unit of a-b flow is i⊤W−1i, where W is the diagonal
matrix of edge weights, and i is the unit electrical flow from a to b. Since i is induced by some
voltage v ∈ RV and i =WBv, the power dissipated is

i⊤W−1i = (WBv)⊤W−1(WBv) = v⊤B⊤WBv = v⊤Lv .

And since
Reff(a, b) = (1a − 1b)

⊤L+(1a − 1b) = (Lv)⊤L+(Lv) = v⊤Lv ,

the network dissipates the same power as the equivalent resistor.
In the last equation, the first equality relating effective resistance and L+ is proved to §1 of this

notes; the second equality is due to Lv = 1a − 1b (that is, v is the voltage vector so that one unit
of current flows from a to b); the last equality is LL+L = L. □
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