
CSCI5160 Approximation Algorithms Spring 2021
Lecturer: Siu On Chan Scribe: Siu On Chan

Notes 09: Graph spectrum and Laplacian
We will consider undirected graph (without parallel edges or self-loops). We sometimes allow

positive edge weights.

1. Graph spectrum

Consider an unweighted graph G on vertex set V of size n. its adjacency matrix A is a V -by-V
matrix (i.e. rows are indexed by V , and so are the columns), whose Vij-entry Aij is 1 if (i, j) is an
edge in G, and Aij is 0 otherwise.

More generally, given a weighted graph with edge weights wij for edge (i, j), the ij-entry of the
adjacency matrix Aij is simply wij . Non-edges have weight 0 by convention.

Since we only consider undirected graph, its adjacency matrix A is symmetric. So A has n real
eigenvalues and eigenvectors.

1.1. Complete graph. For the complete graph, the adjacency matrix A = J − I, where J is the
all-one matrix.

J = 11⊤, so it has an eigenvalue n (with eigenvector 1), and eigenvalue 0 with multiplicity n− 1.
Here 1 denotes the all-one vector (in RV ).

The identity matrix I has eigenvalue 1 with multiplicity n.
Subtracting I from J decreases all eigenvalues by 1. So A has eigenvalue n− 1 (with eigenvector

1) and eigenvalue −1 with multiplicity n− 1.

2. Degree

The degree of a vertex of an unweighted graph is the number of edges incident to it. Let ∆ denote
the maximum degree over all vertices.

Claim 2.1. Any eigenvalues of the adjacency matrix A is at most ∆ in magnitude.

Proof. Let v be an eigenvector of A with eigenvalue λ, so that Av = λv. Assume i is the vertex
that maximizes |vi|. Then

|(λv)i| = |(Av)i| =

∣∣∣∣∣∣
∑
j∈V

Aijvj

∣∣∣∣∣∣ ⩽
∑
j∼i

|vj | ⩽ ∆|vi|. □

3. Graph Laplacian

Given an edge e = (i, j) of weight we, its Laplacian is Le = we(1i − 1j)(11 − 1j)
⊤. Here 1i ∈ RV

denotes the vector that has entry 1 at vertex i and 0 elsewhere. This matrix has only four nonzero
entries: we at (i, i) and (j, j), and −we at (i, j) and (j, i).

Given a weighted graph G, its Laplacian is

LG =
∑
e∈G

Le =
∑
e∈G

we(1i − 1j)(1i − 1j)
⊤.

Note that the Laplacian of any edge is positive semidefinite (using our assumption that edge
weights are nonnegative). Therefore the Laplacian of any graph is also positive semidefinite.

If we sort all its eigenvalues λ1 ⩽ . . . ⩽ λn, we know 0 ⩽ λ1. In fact the Laplacian always has
eigenvalue 0, with eigenvector 1. What can we say about the second smallest eigenvalue λ2?

4. Connectedness

Claim 4.1. A graph is connected if and only if 0 is an eigenvalue of LG with multiplicity 1. (i.e.
λ2 > 0)
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Proof. If G is disconnected, then V can be partitioned into two vertex subsets U and U with no
edge between them. Then 1U (the vector that is all-one on U and all-zero outside U) and 1U are
linearly independent eigenvectors of LG, both corresponding to eigenvalue 0.

Suppose G is connected and x is an eigenvector of LG of eigenvalue 0, then Lx = 0 and x⊤Lx = 0.
Last equality means

∑
(i,j)∈Gwij(xi − xj)

2 = 0.
Since all edge weights are positive and (xi − xj)

2 is nonnegative, the sum can be zero only when
all terms wij(xi − xj)

2 are zero. Given a vertex i, all neighbors j of i must have xj = xi, or else the
sum is strictly positive. The same argument shows all vertices j in the same connected component
as i have xj = xi. Since G is connected, we have xj = xi for all vertices j, so v must be of the form
α1 for some real number α. This means the eigenvalue 0 of LG has multiplicity 1. □

5. Rayleigh quotient

We will relate eigenvalues and eigenvectors to optimization using Rayleigh quotient.

Definition 5.1. Given a real symmetric matrix B and a non-zero vector x, its Rayleigh quotient

is x⊤Bx

x⊤x
=

∑
ij Bijxixj∑

i x
2
i

.

Let µ1 ⩾ . . . ⩾ µn be the eigenvalues of a real symmetric matrix B with orthonormal eigenvectors
v1, . . . , vn, so that B =

∑
1⩽i⩽n µiviv

⊤
i .

Claim 5.2. µ1 = maxx̸=0
x⊤Bx
x⊤x

.

Proof. Express x = c1v1 + · · ·+ cnvn as a linear combination in the eigenbasis. Then

x⊤Bx =
(∑

i civ
⊤
i

) (∑
i µiviv

⊤
i

)
(
∑

i civi) =
∑

i µic
2
i

because vi are orthonormal. Similarly,
x⊤x =

(∑
i civ

⊤
i

)
(
∑

i civi) =
∑

i c
2
i .

We have x⊤Bx =
∑

i µic
2
i ⩽ µ1

∑
i c

2
i = µ1x

⊤x.
Equality can be achieved when c1 = 1 and c2 = · · · = cn = 0, i.e. x is the top eigenvector v1. □

6. Courant-Fischer

Let B be a real symmetric matrix as in the previous section, with eigenvalues µ1 ⩾ . . . ⩾ µn and
orthonormal eigenvectors v1, . . . , vn.

The following theorem says that the k-th largest eigenvalue is the answer to the following opti-
mization problem: Among all k-dimensional subspaces S of Rn, if we find the minimum Rayleigh
quotient within S, which subspace S has the largest minimum Rayleigh quotient?

Theorem 6.1 (Courant–Fischer).

µk = max
subspace S⊆Rn

dimS=k

min
x∈S
x̸=0

x⊤Bx

x⊤x
= min

subspace S⊆Rn

dimS=n−k+1

max
x∈S
x̸=0

x⊤Bx

x⊤x

Proof. We only prove the max-min term, since the min-max is similar.
Let Sk be the k-dimensional subspace spanned by the first k eigenvectors v1, . . . , vk. Any x ∈ Sk,

when expressed in the eigenbasis x =
∑

i civi, has ck+1 = · · · = cn = 0.
So x⊤Bx =

∑
i µic

2
i =

∑
i⩽k µic

2
i ⩾ µk

∑
i⩽k c

2
i = µkx

⊤x.
That means the minimum Rayleigh quotient over Sk is at least µk. Hence µk is at most the

max-min.
To show µk is at least the max-min, note that any k-dimensional subspace must intersect the

n− k + 1 dimensional subspace Tk spanned by the bottom eigenvectors vk+1, . . . , vn.
For any x ∈ Tk \ {0}, its Rayleigh quotient is at most µk because

x⊤Bx =
∑

i µic
2
i =

∑
i>k µic

2
i ⩽ µk

∑
i>k c

2
i = µkx

⊤x .

So the minimum Rayleigh quotient over any k-dimensional subspace S must be at most µk. And
this remains true after maximizing over all subspaces S. □
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7. Eigenvalue interlacing

Let B be a real symmetric matrix with eigenvalues β1 ⩾ . . . ⩾ βn in non-increasing order. Let C
be a principle submatrix of B, obtained by deleting the same row and column. Let γ1 ⩾ . . . ⩾ γn−1

be its eigenvalues.

Theorem 7.1. β1 ⩾ γ1 ⩾ β2 ⩾ γ2 ⩾ . . . ⩾ βn−1 ⩾ γn−1 ⩾ βn.

Proof. βk ⩾ γk: By Courant–Fischer, βk is maximizing a quantity (minimum Rayleigh quotient)
over all k-dimensional subspace S. When restricting to only those subspaces S orthogonal to 1i

(where i is the common index of the removed row and column), the maximum can only decrease.
And for any vector x in a subspace S orthogonal to 1i, its Rayleigh quotient wrt to B is the same
as that wrt to C. Now the maximum becomes γk, again by Courant–Fischer. In summary,

βk = max
S⊆Rn

dimS=k

min
x∈S
x̸=0

x⊤Bx

x⊤x
⩾ max

S⊆Rn

dimS=k
S⊥1i

min
x∈S
x̸=0

x⊤Bx

x⊤x
= max

S⊆Rn−1

dimS=k

min
x∈S
x̸=0

x⊤Cx

x⊤x
= γk .

γk ⩾ βk+1: By Courant–Fischer, βk+1 is maximizing a quantity (minimum Rayleigh quotient)
over all k+1 dimensional subspaces S. Let S∗ be the maximizing subspace. Since S∗ has dimension
k+1, when intersecting with the orthogonal complement of 1i (where i is the common index of the
removed row and column), the intersection S′ must have dimension at least k. So

βk+1 = min
s∈S∗

x⊤Bx

x⊤x
⩽ min

x∈S′\{0}

x⊤Bx

x⊤x
= min

x∈S′\{0}

x⊤Cx

x⊤x
⩽ max

dimS=k
min

x∈S\{0}

x⊤Cx

x⊤x
= γk . □

Corollary 7.2. Let B be any real symmetric matrix and C be a principle submatrix of B, obtained
by removing the same set of k rows and columns from B. Call β1 ⩾ . . . ⩾ βn eigenvalues of B and
γ1 ⩾ . . . ⩾ γn−k eigenvalues of C. Then for any 1 ⩽ i ⩽ n− k,

βi ⩾ γi ⩾ βi+k.

8. Induced subgraphs

Sensitivity Conjecture was a well-known conjecture in Theoretical Computer Science that was
open for more than 30 years. It is known to follow from another conjecture about graphs that was
recently proved, with a remarkably short proof.

The d-dimensional hypercube G is the graph on 2d vertices, labelled with all binary strings of
length d, and two vertices are adjacent if their corresponding strings differ in exactly one position.

Theorem 8.1 (Huang). Any induced subgraph of the d-dimensional hypercube G that contains
strictly more than half of the vertices of G must have maximum degree at least

√
d.

Proof. Inductively define matrices

A1 =

(
0 1
1 0

)
, Ad =

(
Ad−1 I
I −Ad−1

)
.

It can be checked that Ad is an ±1-signed adjacency matrix of the d-dimensional hypercube, in the
sense that an edge correspond to ±1 entry, and zero otherwise.

Lemma 8.2. Ad is a 2d-by-2d matrix whose eigenvalues are
√
d with multiplicity 2d−1 and −

√
d

with multiplicity 2d−1.

Proof. It can be proved by induction that A2
d = dI, because for d = 1, A2

1 = I, and in general

A2
d =

(
A2

d−1 + I 0
0 A2

d−1 + I

)
= dI,

where the last equality uses the induction hypothesis.
Eigenvalues of the square of a real symmetric matrix are precisely the squares of its eigenvalues.

Therefore all the eigenvalues of Ad are either
√
d or −

√
d. Since trace of Ad is 0, and trace is well

known to be equal to the sum of eigenvalues, exactly half of the eigenvalues of Ad are
√
d and the

rest −
√
d. □
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Any induced subgraph H of G such that H contains 2d−1 + 1 vertices (i.e. strictly more than
half) corresponds to a principle submatrix C of Ad. By interlacing theorem, the top eigenvalue of
C is at least the 2d−1-th largest eigenvalue of Ad, which is

√
d.

The main result follows by applying Claim 2.1 about top eigenvalue and maximum degree, and
noting that the proof of the claim still holds for ±1-signed adjacency matrix. □
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